Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Some Connections Between Isoperimetric And Sobolev Type Inequalities
Download Some Connections Between Isoperimetric And Sobolev Type Inequalities full books in PDF, epub, and Kindle. Read online Some Connections Between Isoperimetric And Sobolev Type Inequalities ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Some Connections between Isoperimetric and Sobolev-type Inequalities by : Serguei Germanovich Bobkov
Download or read book Some Connections between Isoperimetric and Sobolev-type Inequalities written by Serguei Germanovich Bobkov and published by American Mathematical Soc.. This book was released on 1997 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: For Borel probability measures on metric spaces, this text studies the interplay between isoperimetric and Sobolev-type inequalities. In particular the question of finding optimal constants via isoperimetric quantities is explored. Also given are necessary and sufficient conditions for the equivalence between the extremality of some sets in the isoperimetric problem and the validity of some analytic inequalities. The book devotes much attention to: the probability distributions on the real line; the normalized Lebesgue measure on the Euclidean sheres; and the canonical Gaussian measure on the Euclidean space.
Download or read book Sobolev Spaces written by Vladimir Maz'ya and published by Springer Science & Business Media. This book was released on 2011-02-11 with total page 882 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sobolev spaces play an outstanding role in modern analysis, in particular, in the theory of partial differential equations and its applications in mathematical physics. They form an indispensable tool in approximation theory, spectral theory, differential geometry etc. The theory of these spaces is of interest in itself being a beautiful domain of mathematics. The present volume includes basics on Sobolev spaces, approximation and extension theorems, embedding and compactness theorems, their relations with isoperimetric and isocapacitary inequalities, capacities with applications to spectral theory of elliptic differential operators as well as pointwise inequalities for derivatives. The selection of topics is mainly influenced by the author’s involvement in their study, a considerable part of the text is a report on his work in the field. Part of this volume first appeared in German as three booklets of Teubner-Texte zur Mathematik (1979, 1980). In the Springer volume “Sobolev Spaces”, published in English in 1985, the material was expanded and revised. The present 2nd edition is enhanced by many recent results and it includes new applications to linear and nonlinear partial differential equations. New historical comments, five new chapters and a significantly augmented list of references aim to create a broader and modern view of the area.
Book Synopsis Concentration, Functional Inequalities and Isoperimetry by : Christian Houdré
Download or read book Concentration, Functional Inequalities and Isoperimetry written by Christian Houdré and published by American Mathematical Soc.. This book was released on 2011 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: The interactions between concentration, isoperimetry and functional inequalities have led to many significant advances in functional analysis and probability theory. Important progress has also taken place in combinatorics, geometry, harmonic analysis and mathematical physics, with recent new applications in random matrices and information theory. This will appeal to graduate students and researchers interested in the interplay between analysis, probability, and geometry.
Book Synopsis Special Functions, Partial Differential Equations, and Harmonic Analysis by : Constantine Georgakis
Download or read book Special Functions, Partial Differential Equations, and Harmonic Analysis written by Constantine Georgakis and published by Springer. This book was released on 2014-11-07 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume of papers presented at the conference in honor of Calixto P. Calderón by his friends, colleagues, and students is intended to make the mathematical community aware of his important scholarly and research contributions in contemporary Harmonic Analysis and Mathematical Models applied to Biology and Medicine, and to stimulate further research in the future in this area of pure and applied mathematics.
Book Synopsis European Congress of Mathematics by : Ari Laptev
Download or read book European Congress of Mathematics written by Ari Laptev and published by European Mathematical Society. This book was released on 2005 with total page 906 pages. Available in PDF, EPUB and Kindle. Book excerpt: The European Congress of Mathematics, held every four years, has established itself as a major international mathematical event. Following those in Paris, 1992, Budapest, 1996, and Barcelona, 2000, the Fourth European Congress of Mathematics took place in Stockholm, Sweden, June 27 to July 2, 2004, with 913 participants from 65 countries. Apart from seven plenary and thirty three invited lectures, there were six Science Lectures covering the most relevant aspects of mathematics in science and technology. Moreover, twelve projects of the EU Research Training Networks in Mathematics and Information Sciences, as well as Programmes from the European Science Foundation in Physical and Engineering Sciences, were presented. Ten EMS Prizes were awarded to young European mathematicians who have made a particular contribution to the progress of mathematics. Five of the prizewinners were independently chosen by the 4ECM Scientific Committee as plenary or invited speakers. The other five prizewinners gave their lectures in parallel sessions. Most of these contributions are now collected in this volume, providing a permanent record of so much that is best in mathematics today.
Book Synopsis Concentration and Gaussian Approximation for Randomized Sums by : Sergey Bobkov
Download or read book Concentration and Gaussian Approximation for Randomized Sums written by Sergey Bobkov and published by Springer Nature. This book was released on 2023-06-18 with total page 438 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes extensions of Sudakov's classical result on the concentration of measure phenomenon for weighted sums of dependent random variables. The central topics of the book are weighted sums of random variables and the concentration of their distributions around Gaussian laws. The analysis takes place within the broader context of concentration of measure for functions on high-dimensional spheres. Starting from the usual concentration of Lipschitz functions around their limiting mean, the authors proceed to derive concentration around limiting affine or polynomial functions, aiming towards a theory of higher order concentration based on functional inequalities of log-Sobolev and Poincaré type. These results make it possible to derive concentration of higher order for weighted sums of classes of dependent variables. While the first part of the book discusses the basic notions and results from probability and analysis which are needed for the remainder of the book, the latter parts provide a thorough exposition of concentration, analysis on the sphere, higher order normal approximation and classes of weighted sums of dependent random variables with and without symmetries.
Book Synopsis Topics in Optimal Transportation by : Cédric Villani
Download or read book Topics in Optimal Transportation written by Cédric Villani and published by American Mathematical Soc.. This book was released on 2021-08-25 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first comprehensive introduction to the theory of mass transportation with its many—and sometimes unexpected—applications. In a novel approach to the subject, the book both surveys the topic and includes a chapter of problems, making it a particularly useful graduate textbook. In 1781, Gaspard Monge defined the problem of “optimal transportation” (or the transferring of mass with the least possible amount of work), with applications to engineering in mind. In 1942, Leonid Kantorovich applied the newborn machinery of linear programming to Monge's problem, with applications to economics in mind. In 1987, Yann Brenier used optimal transportation to prove a new projection theorem on the set of measure preserving maps, with applications to fluid mechanics in mind. Each of these contributions marked the beginning of a whole mathematical theory, with many unexpected ramifications. Nowadays, the Monge-Kantorovich problem is used and studied by researchers from extremely diverse horizons, including probability theory, functional analysis, isoperimetry, partial differential equations, and even meteorology. Originating from a graduate course, the present volume is intended for graduate students and researchers, covering both theory and applications. Readers are only assumed to be familiar with the basics of measure theory and functional analysis.
Book Synopsis Around the Research of Vladimir Maz'ya I by : Ari Laptev
Download or read book Around the Research of Vladimir Maz'ya I written by Ari Laptev and published by Springer Science & Business Media. This book was released on 2009-12-02 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fundamental contributions of Professor Maz'ya to the theory of function spaces and especially Sobolev spaces are well known and often play a key role in the study of different aspects of the theory, which is demonstrated, in particular, by presented new results and reviews from world-recognized specialists. Sobolev type spaces, extensions, capacities, Sobolev inequalities, pseudo-Poincare inequalities, optimal Hardy-Sobolev-Maz'ya inequalities, Maz'ya's isocapacitary inequalities in a measure-metric space setting and many other actual topics are discussed.
Book Synopsis Optimal Transport by : Cédric Villani
Download or read book Optimal Transport written by Cédric Villani and published by Springer Science & Business Media. This book was released on 2008-10-26 with total page 970 pages. Available in PDF, EPUB and Kindle. Book excerpt: At the close of the 1980s, the independent contributions of Yann Brenier, Mike Cullen and John Mather launched a revolution in the venerable field of optimal transport founded by G. Monge in the 18th century, which has made breathtaking forays into various other domains of mathematics ever since. The author presents a broad overview of this area, supplying complete and self-contained proofs of all the fundamental results of the theory of optimal transport at the appropriate level of generality. Thus, the book encompasses the broad spectrum ranging from basic theory to the most recent research results. PhD students or researchers can read the entire book without any prior knowledge of the field. A comprehensive bibliography with notes that extensively discuss the existing literature underlines the book’s value as a most welcome reference text on this subject.
Book Synopsis Sobolev Spaces on Metric Measure Spaces by : Juha Heinonen
Download or read book Sobolev Spaces on Metric Measure Spaces written by Juha Heinonen and published by Cambridge University Press. This book was released on 2015-02-05 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analysis on metric spaces emerged in the 1990s as an independent research field providing a unified treatment of first-order analysis in diverse and potentially nonsmooth settings. Based on the fundamental concept of upper gradient, the notion of a Sobolev function was formulated in the setting of metric measure spaces supporting a Poincaré inequality. This coherent treatment from first principles is an ideal introduction to the subject for graduate students and a useful reference for experts. It presents the foundations of the theory of such first-order Sobolev spaces, then explores geometric implications of the critical Poincaré inequality, and indicates numerous examples of spaces satisfying this axiom. A distinguishing feature of the book is its focus on vector-valued Sobolev spaces. The final chapters include proofs of several landmark theorems, including Cheeger's stability theorem for Poincaré inequalities under Gromov–Hausdorff convergence, and the Keith–Zhong self-improvement theorem for Poincaré inequalities.
Book Synopsis Advanced Courses Of Mathematical Analysis V - Proceedings Of The Fifth International School by : Juan Carlos Navarro Pascual
Download or read book Advanced Courses Of Mathematical Analysis V - Proceedings Of The Fifth International School written by Juan Carlos Navarro Pascual and published by World Scientific. This book was released on 2016-06-24 with total page 319 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains recent papers by several specialists in different fields of mathematical analysis. It offers a reasonably wide perspective of the current state of research, and new trends, in areas related to measure theory, harmonic analysis, non-associative structures in functional analysis and summability in locally convex spaces.Those interested in researching any areas of mathematical analysis will find here numerous suggestions on possible topics with an important impact today. Often, the contributions are presented in an expository nature and this makes the discussed topics accessible to a more general audience.
Book Synopsis One-Dimensional Empirical Measures, Order Statistics, and Kantorovich Transport Distances by : Sergey Bobkov
Download or read book One-Dimensional Empirical Measures, Order Statistics, and Kantorovich Transport Distances written by Sergey Bobkov and published by American Mathematical Soc.. This book was released on 2019-12-02 with total page 138 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is devoted to the study of rates of convergence of the empirical measures μn=1n∑nk=1δXk, n≥1, over a sample (Xk)k≥1 of independent identically distributed real-valued random variables towards the common distribution μ in Kantorovich transport distances Wp. The focus is on finite range bounds on the expected Kantorovich distances E(Wp(μn,μ)) or [E(Wpp(μn,μ))]1/p in terms of moments and analytic conditions on the measure μ and its distribution function. The study describes a variety of rates, from the standard one 1n√ to slower rates, and both lower and upper-bounds on E(Wp(μn,μ)) for fixed n in various instances. Order statistics, reduction to uniform samples and analysis of beta distributions, inverse distribution functions, log-concavity are main tools in the investigation. Two detailed appendices collect classical and some new facts on inverse distribution functions and beta distributions and their densities necessary to the investigation.
Book Synopsis Approaching the Kannan-Lovász-Simonovits and Variance Conjectures by : David Alonso-Gutiérrez
Download or read book Approaching the Kannan-Lovász-Simonovits and Variance Conjectures written by David Alonso-Gutiérrez and published by Springer. This book was released on 2015-01-07 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on two central conjectures of Asymptotic Geometric Analysis, the Kannan-Lovász-Simonovits spectral gap conjecture and the variance conjecture, these Lecture Notes present the theory in an accessible way, so that interested readers, even those who are not experts in the field, will be able to appreciate the treated topics. Offering a presentation suitable for professionals with little background in analysis, geometry or probability, the work goes directly to the connection between isoperimetric-type inequalities and functional inequalities, giving the interested reader rapid access to the core of these conjectures. In addition, four recent and important results in this theory are presented in a compelling way. The first two are theorems due to Eldan-Klartag and Ball-Nguyen, relating the variance and the KLS conjectures, respectively, to the hyperplane conjecture. Next, the main ideas needed prove the best known estimate for the thin-shell width given by Guédon-Milman and an approach to Eldan's work on the connection between the thin-shell width and the KLS conjecture are detailed.
Book Synopsis The Study of Minimax Inequalities and Applications to Economies and Variational Inequalities by : George Xian-Zhi Yuan
Download or read book The Study of Minimax Inequalities and Applications to Economies and Variational Inequalities written by George Xian-Zhi Yuan and published by American Mathematical Soc.. This book was released on 1998 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a unified treatment for the study of the existence of equilibria of abstract economics in topological vector spaces from the viewpoint of Ky Fan minimax inequalities, which strongly depend on his infinite dimensional version of the classical Knaster, Kuratowski and Mazurkiewicz Lemma (KKM Lemma) in 1961. Studied are applications of general system versions of minimax inequalities and generalized quasi-variational inequalities, and random abstract economies and its applications to the system of random quasi-variational inequalities are given.
Book Synopsis Hodge Theory in the Sobolev Topology for the de Rham Complex by : Luigi Fontana
Download or read book Hodge Theory in the Sobolev Topology for the de Rham Complex written by Luigi Fontana and published by American Mathematical Soc.. This book was released on 1998 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, the authors treat the full Hodge theory for the de Rham complex when calculated in the Sobolev topology rather than in the $L2$ topology. The use of the Sobolev topology strikingly alters the problem from the classical setup and gives rise to a new class of elliptic boundary value problems. The study takes place on both the upper half space and on a smoothly bounded domain. It features: a good introduction to elliptic theory, pseudo-differential operators, and boundary value problems; theorems completely explained and proved; and new geometric tools for differential analysis on domains and manifolds.
Book Synopsis Symmetrization in Analysis by : Albert Baernstein II
Download or read book Symmetrization in Analysis written by Albert Baernstein II and published by Cambridge University Press. This book was released on 2019-03-14 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: Symmetrization is a rich area of mathematical analysis whose history reaches back to antiquity. This book presents many aspects of the theory, including symmetric decreasing rearrangement and circular and Steiner symmetrization in Euclidean spaces, spheres and hyperbolic spaces. Many energies, frequencies, capacities, eigenvalues, perimeters and function norms are shown to either decrease or increase under symmetrization. The book begins by focusing on Euclidean space, building up from two-point polarization with respect to hyperplanes. Background material in geometric measure theory and analysis is carefully developed, yielding self-contained proofs of all the major theorems. This leads to the analysis of functions defined on spheres and hyperbolic spaces, and then to convolutions, multiple integrals and hypercontractivity of the Poisson semigroup. The author's 'star function' method, which preserves subharmonicity, is developed with applications to semilinear PDEs. The book concludes with a thorough self-contained account of the star function's role in complex analysis, covering value distribution theory, conformal mapping and the hyperbolic metric.
Book Synopsis Geometry of Isotropic Convex Bodies by : Silouanos Brazitikos
Download or read book Geometry of Isotropic Convex Bodies written by Silouanos Brazitikos and published by American Mathematical Soc.. This book was released on 2014-04-24 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of high-dimensional convex bodies from a geometric and analytic point of view, with an emphasis on the dependence of various parameters on the dimension stands at the intersection of classical convex geometry and the local theory of Banach spaces. It is also closely linked to many other fields, such as probability theory, partial differential equations, Riemannian geometry, harmonic analysis and combinatorics. It is now understood that the convexity assumption forces most of the volume of a high-dimensional convex body to be concentrated in some canonical way and the main question is whether, under some natural normalization, the answer to many fundamental questions should be independent of the dimension. The aim of this book is to introduce a number of well-known questions regarding the distribution of volume in high-dimensional convex bodies, which are exactly of this nature: among them are the slicing problem, the thin shell conjecture and the Kannan-Lovász-Simonovits conjecture. This book provides a self-contained and up to date account of the progress that has been made in the last fifteen years.