Solving Three-dimensional Problems in Natural and Hydraulic Fracture Development

Download Solving Three-dimensional Problems in Natural and Hydraulic Fracture Development PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 312 pages
Book Rating : 4.:/5 (858 download)

DOWNLOAD NOW!


Book Synopsis Solving Three-dimensional Problems in Natural and Hydraulic Fracture Development by : Farrokh Sheibani

Download or read book Solving Three-dimensional Problems in Natural and Hydraulic Fracture Development written by Farrokh Sheibani and published by . This book was released on 2013 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although many fracture models are based on two-dimensional plane strain approximations, accurately predicting fracture propagation geometry requires accounting for the three-dimensional aspects of fractures. In this study, we implemented 3-D displacement discontinuity (DD) boundary element modeling to investigate the following intrinsically 3-D natural or hydraulic fracture propagation problems: the effect of fracture height on lateral propagation of vertical natural fractures, joint development in the vicinity of normal faults, and hydraulic fracture height growth and non-planar propagation paths. Fracture propagation is controlled by stress intensity factor (SIF) and its determination plays a central role in LEFM. The DD modeling is used to evaluate SIF in Mode I, II and III at the tip of an arbitrarily-shaped embedded crack by using crack-tip element displacement discontinuity. We examine the accuracy of SIF calculation is for rectangular, penny-shaped, and elliptical planar cracks. Using the aforementioned model for lateral propagation of overlapping fractures shows that the curving path of overlapping fractures is strongly influenced by the spacing-to-height ratio of fractures, as well as the differential stress magnitude. We show that the angle of intersection between two non-coincident but parallel en-echelon fractures depends strongly on the fracture height-to-spacing ratio, with intersection angles being asymptotic for "tall" fractures (large height-to-spacing ratios) and nearly orthogonal for "short" fractures. Stress perturbation around normal faults is three-dimensionally heterogeneous. That perturbation can result in joint development at the vicinity of normal faults. We examine the geometrical relationship between genetically related normal faults and joints in various geologic environments by considering a published case study of fault-related joints in the Arches National Park region, Utah. The results show that joint orientation is dependent on vertical position with respect to the normal fault, the spacing-to-height ratio of sub-parallel normal faults, and Poisson's ratio of the media. Our calculations represent a more physically reasonable match to measured field data than previously published, and we also identify a new mechanism to explain the driving stress for opening mode fracture propagation upon burial of quasi-elastic rocks. Hydraulic fractures may not necessarily start perpendicular to the minimum horizontal remote stress. We use the developed fracture propagation model to explain abnormality in the geometry of fracturing from misaligned horizontal wellbores. Results show that the misalignment causes non-planar lateral propagation and restriction in fracture height and fracture width in wellbore part.

Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications

Download Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351796283
Total Pages : 259 pages
Book Rating : 4.3/5 (517 download)

DOWNLOAD NOW!


Book Synopsis Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications by : Xinpu Shen

Download or read book Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications written by Xinpu Shen and published by CRC Press. This book was released on 2017-03-27 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: The expansion of unconventional petroleum resources in the recent decade and the rapid development of computational technology have provided the opportunity to develop and apply 3D numerical modeling technology to simulate the hydraulic fracturing of shale and tight sand formations. This book presents 3D numerical modeling technologies for hydraulic fracturing developed in recent years, and introduces solutions to various 3D geomechanical problems related to hydraulic fracturing. In the solution processes of the case studies included in the book, fully coupled multi-physics modeling has been adopted, along with innovative computational techniques, such as submodeling. In practice, hydraulic fracturing is an essential project component in shale gas/oil development and tight sand oil, and provides an essential measure in the process of drilling cuttings reinjection (CRI). It is also an essential measure for widened mud weight window (MWW) when drilling through naturally fractured formations; the process of hydraulic plugging is a typical application of hydraulic fracturing. 3D modeling and numerical analysis of hydraulic fracturing is essential for the successful development of tight oil/gas formations: it provides accurate solutions for optimized stage intervals in a multistage fracking job. It also provides optimized well-spacing for the design of zipper-frac wells. Numerical estimation of casing integrity under stimulation injection in the hydraulic fracturing process is one of major concerns in the successful development of unconventional resources. This topic is also investigated numerically in this book. Numerical solutions to several other typical geomechanics problems related to hydraulic fracturing, such as fluid migration caused by fault reactivation and seismic activities, are also presented. This book can be used as a reference textbook to petroleum, geotechnical and geothermal engineers, to senior undergraduate, graduate and postgraduate students, and to geologists, hydrogeologists, geophysicists and applied mathematicians working in this field. This book is also a synthetic compendium of both the fundamentals and some of the most advanced aspects of hydraulic fracturing technology.

Hydraulic Fracture Modeling

Download Hydraulic Fracture Modeling PDF Online Free

Author :
Publisher : Gulf Professional Publishing
ISBN 13 : 0128129999
Total Pages : 568 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Hydraulic Fracture Modeling by : Yu-Shu Wu

Download or read book Hydraulic Fracture Modeling written by Yu-Shu Wu and published by Gulf Professional Publishing. This book was released on 2017-11-30 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic Fracture Modeling delivers all the pertinent technology and solutions in one product to become the go-to source for petroleum and reservoir engineers. Providing tools and approaches, this multi-contributed reference presents current and upcoming developments for modeling rock fracturing including their limitations and problem-solving applications. Fractures are common in oil and gas reservoir formations, and with the ongoing increase in development of unconventional reservoirs, more petroleum engineers today need to know the latest technology surrounding hydraulic fracturing technology such as fracture rock modeling. There is tremendous research in the area but not all located in one place. Covering two types of modeling technologies, various effective fracturing approaches and model applications for fracturing, the book equips today’s petroleum engineer with an all-inclusive product to characterize and optimize today’s more complex reservoirs. Offers understanding of the details surrounding fracturing and fracture modeling technology, including theories and quantitative methods Provides academic and practical perspective from multiple contributors at the forefront of hydraulic fracturing and rock mechanics Provides today’s petroleum engineer with model validation tools backed by real-world case studies

Hydraulic Fracture Modeling in Naturally Fractured Reservoirs

Download Hydraulic Fracture Modeling in Naturally Fractured Reservoirs PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 239 pages
Book Rating : 4.:/5 (114 download)

DOWNLOAD NOW!


Book Synopsis Hydraulic Fracture Modeling in Naturally Fractured Reservoirs by : Kaustubh Shrivastava

Download or read book Hydraulic Fracture Modeling in Naturally Fractured Reservoirs written by Kaustubh Shrivastava and published by . This book was released on 2019 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing of horizontal wells is one of the key technological breakthroughs that has led to the shale revolution. Hydraulic fracturing models are used to engineer hydraulic fracture design and optimize production. Typically, hydraulic fracturing models treat hydraulic fractures as planar, bi-wing fractures. However, recent core-through investigations have suggested that during hydraulic fracturing in naturally fractured reservoirs, complex hydraulic fracture geometries can be created due to the interaction of the growing hydraulic fracture with natural fractures. This limits the application of planar fracture models for optimizing hydraulic fracturing design in naturally fractured reservoirs. In this research, we present a novel three-dimensional displacement discontinuity method based hydraulic fracturing simulator that allows us to model hydraulic fracture growth in the presence of natural fractures along with proppant transport in an efficient manner. The model developed in this dissertation is used to investigate the interaction of a hydraulic fracture with natural fractures and study the transport of proppant in the resulting complex fracture networks. This investigation gives us novel insight into the influence of fracture geometry and stress interference on the final distribution of proppant in fracture networks. Based on this investigation, suggestions are made to improve proppant transport in complex fracture networks. In order to correctly capture the effect of natural fractures on fracture growth, knowledge about the distribution of natural fractures in the reservoir is imperative. Typically, little is known about the in-situ natural fracture distribution, as direct observation of the reservoir is not possible. A novel technique of synthetic coring is developed to create a discrete fracture network (DFN) from core data, and it is used to create a DFN based on the Hydraulic Fracturing Test Site #1 data. Hydraulic fracture propagation is modeled in the created DFN, and the results are compared with field observations. As the reservoir may contain thousands of natural fractures, simulations in a realistic DFN can be computationally very expensive. In order to reduce the computational requirements of the simulator, we present a novel predictor step based on the local linearization method that provides a better initial guess for solving the fluid-solid interaction problem. This is shown to reduce computational time significantly. A novel technique, Extended Adaptive Integral Method, to speed up the simulator is developed. The method uses an effective medium to represent the interaction between displacement discontinuity elements and reduces the order of complexity of solving the geomechanical system of equations from O(N2) to O(NlogN). The novel formulation of this method is presented, and sensitivity studies are conducted to show the improvement in computational efficiency

Development of a Numerical Simulator for Three-dimensional Hydraulic Fracture Propagation in Heterogeneous Media

Download Development of a Numerical Simulator for Three-dimensional Hydraulic Fracture Propagation in Heterogeneous Media PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 252 pages
Book Rating : 4.:/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Development of a Numerical Simulator for Three-dimensional Hydraulic Fracture Propagation in Heterogeneous Media by : R. D. Barree

Download or read book Development of a Numerical Simulator for Three-dimensional Hydraulic Fracture Propagation in Heterogeneous Media written by R. D. Barree and published by . This book was released on 1984 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt:

New numerical approaches to model hydraulic fracturing in tight reservoirs with consideration of hydro-mechanical coupling effects

Download New numerical approaches to model hydraulic fracturing in tight reservoirs with consideration of hydro-mechanical coupling effects PDF Online Free

Author :
Publisher : Cuvillier Verlag
ISBN 13 : 3736946562
Total Pages : 172 pages
Book Rating : 4.7/5 (369 download)

DOWNLOAD NOW!


Book Synopsis New numerical approaches to model hydraulic fracturing in tight reservoirs with consideration of hydro-mechanical coupling effects by : Lei Zhou

Download or read book New numerical approaches to model hydraulic fracturing in tight reservoirs with consideration of hydro-mechanical coupling effects written by Lei Zhou and published by Cuvillier Verlag. This book was released on 2014-03-20 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this dissertation, two new numerical approaches for hydraulic fracturing in tight reservoir were developed. A more physical-based numerical 3D-model was developed for simulating the whole hydraulic fracturing process including fracture propagation, closure and contact as well as proppant transport and settling. In this approach rock formation, pore and fracture systems were assembled together, in which hydro-mechanical coupling effect, proppant transport and settling as well as their influences on fracture closure and contact were fully considered. A combined FDM and FVM schema was used to solve the problem. Three applications by using the new approach were presented. The results illustrated the whole hydraulic fracturing process well and seemed to be logical, which confirmed the ability of the developed approach to model the in-situ hydraulic fracturing operation from injection start till fully closure. In order to investigate the orientation problem of hydraulic fracturing in tight reservoir, a new approach for simulating arbitrary fracture propagation and orientation in 2D was developed. It was solved by a hybrid schema of XFEM and FVM. Three numerical studies were illustrated, which proved the ability of the developed approach to solve the orientation problem in field cases.

Numerical Modeling of Nonlinear Problems in Hydraulic Fracturing

Download Numerical Modeling of Nonlinear Problems in Hydraulic Fracturing PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (126 download)

DOWNLOAD NOW!


Book Synopsis Numerical Modeling of Nonlinear Problems in Hydraulic Fracturing by : Endrina Rivas

Download or read book Numerical Modeling of Nonlinear Problems in Hydraulic Fracturing written by Endrina Rivas and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing is a stimulation technique in which fluid is injected at high pressure into low-permeability reservoirs to create a fracture network for enhanced production of oil and gas. It is the primary purpose of hydraulic fracturing to enhance well production. The three main mechanisms during hydraulic fracturing for oil and gas production which largely impact the reservoir production are: (1) fracture propagation during initial pad fluid injection, which defines the extent of the fracture; (2) fracture propagation during injection of proppant slurry (fluid mixed with granular material), creating a propped reservoir zone; and (3) shear dilation of natural fractures surrounding the hydraulically fractured zone, creating a broader stimulated zone. The thesis has three objectives that support the simulation of mechanisms that lead to enhanced production of a hydraulically-fractured reservoir. The first objective is to develop a numerical model for the simulation of the mechanical deformation and shear dilation of naturally fractured rock masses. In this work, a two-dimensional model for the simulation of discrete fracture networks (DFN) is developed using the extended finite element method (XFEM), in which the mesh does not conform to the natural fracture network. The model incorporates contact, cohesion, and friction between blocks of rock. Shear dilation is an important mechanism impacting the overall nonlinear response of naturally fractured rock masses and is also included in the model--physics previously not simulated within an XFEM context. Here, shear dilation is modeled through a linear dilation model, capped by a dilation limiting displacement. Highly nonlinear problems involving multiple joint sets are investigated within a quasi-static context. An explicit scheme is used in conjunction with the dynamic relaxation technique to obtain equilibrium solutions in the face of the nonlinear constitutive models from contact, cohesion, friction, and dilation. The numerical implementation is verified and its convergence illustrated using a shear test and a biaxial test. The model is then applied to the practical problem of the stability of a slope of fractured rock. The second objective is to develop a numerical model for the simulation of proppant transport through planar fractures. This work presents the numerical methodology for simulation of proppant transport through a hydraulic fracture using the finite volume method. Proppant models commonly used in the hydraulic fracturing literature solve the linearized advection equation; this work presents solution methods for the nonlinear form of the proppant flux equation. The complexities of solving the nonlinear and heterogeneous hyperbolic advection equation that governs proppant transport are tackled, particularly handling shock waves that are generated due to the nonlinear flux function and the spatially-varying width and pressure gradient along the fracture. A critical time step is derived for the proppant transport problem solved using an explicit solution strategy. Additionally, a predictor-corrector algorithm is developed to constrain the proppant from exceeding the physically admissible range. The model can capture the mechanisms of proppant bridging occurring in sections of narrow fracture width, tip screen-out occurring when fractures become saturated with proppant, and flushing of proppant into new fracture segments. The results are verified by comparison with characteristic solutions and the model is used to simulate proppant transport through a KGD fracture. The final objective is to develop a numerical model for the simulation of proppant transport through propagating non-planar fractures. This work presents the first monolithic coupled numerical model for simulating proppant transport through a propagating hydraulic fracture. A fracture is propagated through a two-dimensional domain, driven by the flow of a proppant-laden slurry. Modeling of the slurry flow includes the effects of proppant bridging and the subsequent flow of fracturing fluid through the packed proppant pack. This allows for the simulation of a tip screen-out, a phenomenon in which there is a high degree of physical interaction between the rock deformation, fluid flow, and proppant transport. Tip screen-out also leads to shock wave formation in the solution. Numerical implementation of the model is verified and the model is then used to simulate a tip screen-out in both planar and non-planar fractures. An analysis of the fracture aperture, fluid pressure, and proppant concentration profiles throughout the simulation is performed for three different coupling schemes: monolithic, sequential, and loose coupling. It is demonstrated that even with time step refinement, the loosely-coupled scheme fails to converge to the same results as the monolithic and sequential schemes. The monolithic and sequential algorithms yield the same solution up to the onset of a tip screen-out, after which the sequential scheme fails to converge. The monolithic scheme is shown to be more efficient than the sequential algorithm (requiring fewer iterations) and has comparable computational cost to the loose coupling algorithm. Thus, the monolithic scheme is shown to be optimal in terms of computational efficiency, robustness, and accuracy. In addition to this finding, a robust and more efficient algorithm for injection-rate controlled hydraulic fracturing simulation based on global mass conservation is presented in the thesis.

Stress Intensity Factor Determination for Three-Dimensional Crack Using the Displacement Discontinuity Method with Applications to Hydraulic Fracture Height Growth and Non- Planar Propagation Paths

Download Stress Intensity Factor Determination for Three-Dimensional Crack Using the Displacement Discontinuity Method with Applications to Hydraulic Fracture Height Growth and Non- Planar Propagation Paths PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Stress Intensity Factor Determination for Three-Dimensional Crack Using the Displacement Discontinuity Method with Applications to Hydraulic Fracture Height Growth and Non- Planar Propagation Paths by : Farrokh Sheibani

Download or read book Stress Intensity Factor Determination for Three-Dimensional Crack Using the Displacement Discontinuity Method with Applications to Hydraulic Fracture Height Growth and Non- Planar Propagation Paths written by Farrokh Sheibani and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Stress intensity factor determination plays a central role in linearly elastic fracture mechanics (LEFM) problems. Fracture propagation is controlled by the stress field near the crack tip. Because this stress field is asymptotic dominant or singular, it is characterized by the stress intensity factor (SIF). Since many rock types show brittle elastic behaviour under hydrocarbon reservoir conditions, LEFM can be satisfactorily used for studying hydraulic fracture development. The purpose of this paper is to describe a numerical method to evaluate the stress intensity factor in Mode I, II and III at the tip of an arbitrarily-shaped, embedded cracks. The stress intensity factor is evaluated directly based on displacement discontinuities (DD) using a three-dimensional displacement discontinuity, boundary element method based on the equations of proposed in [1]. The boundary element formulation incorporates the fundamental closed-form analytical solution to a rectangular discontinuity in a homogenous, isotropic and linearly elastic half space. The accuracy of the stress intensity factor calculation is satisfactorily examined for rectangular, penny-shaped and elliptical planar cracks. Accurate and fast evaluation of the stress intensity factor for planar cracks shows the proposed procedure is robust for SIF calculation and crack propagation purposes. The empirical constant proposed by [2] relating crack tip element displacement discontinuity and SIF values provides surprisingly accurate results for planar cracks with limited numbers of constant DD elements. Using the described numerical model, we study how fracturing from misaligned horizontal wellbores might results in non-uniform height growth of the hydraulic fracture by evaluating of SIF distribution along the upper front of the fracture.

Numerical Modeling of Complex Hydraulic Fracture Propagation in Layered Reservoirs with Auto-optimization

Download Numerical Modeling of Complex Hydraulic Fracture Propagation in Layered Reservoirs with Auto-optimization PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (134 download)

DOWNLOAD NOW!


Book Synopsis Numerical Modeling of Complex Hydraulic Fracture Propagation in Layered Reservoirs with Auto-optimization by : Jiacheng Wang (Ph. D.)

Download or read book Numerical Modeling of Complex Hydraulic Fracture Propagation in Layered Reservoirs with Auto-optimization written by Jiacheng Wang (Ph. D.) and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hydraulic fracturing brings economic unconventional reservoir developments, and multi-cluster completion designs result in complex hydraulic fracture geometries. Therefore, accurate yet efficient modeling of the propagation of multiple non-planar hydraulic fractures is desired to study the mechanisms of hydraulic fracture propagation and optimize field completion designs. In this research, a novel hydraulic fracture model is developed to simulate the propagation of multiple hydraulic fractures with proppant transport in layered and naturally fractured reservoirs. The simplified three-dimensional displacement discontinuity method (S3D DDM) is enhanced to compute the hydraulic fracture deformation and propagation with analytical fracture height growth and vertical width variation. Using a single row of DDM elements, the enhanced S3D DDM hydraulic fracture model computes the fully 3D geometries with a similar computational intensity to a 2D model. Then an Eulerian-Lagrangian proppant transport model is developed, where the slurry flow rate and pressure are solved within the Eulerian regime, and the movement of solid proppant particles is solved within the Lagrangian regime. The adaptive proppant gridding scheme in the model allows a smaller grid size at the earlier fracturing stage for higher resolution and a larger grid size at the later fracturing stage for higher efficiency. Besides the physical model, an optimization module that utilizes advanced optimization algorithms such as genetic algorithm (GA) and pattern search algorithm (PSA) is proposed to automatically optimize the completion designs according to the preset targets. Numerical results show that hydraulic fracture propagation is under the combined influence of the in-situ stress, pumping schedule, natural fractures, and cluster placement. Hence, numerical simulation is needed to predict complex hydraulic fracture geometries under various geologic and completion settings. The complex hydraulic fracture geometries, together with fracturing fluid and proppant properties, also affect proppant placement. Moreover, the stress contrast at layer interfaces can cause proppant bridging and form barriers on the proppant transport path. The optimized completion designs increase effective hydraulic and propped areas, but they vary depending on the optimization targets. The developed hydraulic fracture model provides insights into the hydraulic fracturing process and benefits unconventional reservoir development

Development of a Three-dimensional, Semi-analytical Propagation Model for Non-symmetric Hydraulic Fractures

Download Development of a Three-dimensional, Semi-analytical Propagation Model for Non-symmetric Hydraulic Fractures PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 278 pages
Book Rating : 4.:/5 (347 download)

DOWNLOAD NOW!


Book Synopsis Development of a Three-dimensional, Semi-analytical Propagation Model for Non-symmetric Hydraulic Fractures by : Jose Ignacio Rueda

Download or read book Development of a Three-dimensional, Semi-analytical Propagation Model for Non-symmetric Hydraulic Fractures written by Jose Ignacio Rueda and published by . This book was released on 1994 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Solving Ordinary Differential Equations II

Download Solving Ordinary Differential Equations II PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662099470
Total Pages : 615 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Solving Ordinary Differential Equations II by : Ernst Hairer

Download or read book Solving Ordinary Differential Equations II written by Ernst Hairer and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Whatever regrets may be, we have done our best." (Sir Ernest Shackleton, turning back on 9 January 1909 at 88°23' South.) Brahms struggled for 20 years to write his first symphony. Compared to this, the 10 years we have been working on these two volumes may even appear short. This second volume treats stiff differential equations and differential alge braic equations. It contains three chapters: Chapter IV on one-step (Runge Kutta) methods for stiff problems, Chapter Von multistep methods for stiff problems, and Chapter VI on singular perturbation and differential-algebraic equations. Each chapter is divided into sections. Usually the first sections of a chapter are of an introductory nature, explain numerical phenomena and exhibit numerical results. Investigations of a more theoretieal nature are presented in the later sections of each chapter. As in Volume I, the formulas, theorems, tables and figures are numbered consecutively in each section and indicate, in addition, the section num ber. In cross references to other chapters the (latin) chapter number is put first. References to the bibliography are again by "author" plus "year" in parentheses. The bibliography again contains only those papers which are discussed in the text and is in no way meant to be complete.

Three-Dimensional Crack Problems

Download Three-Dimensional Crack Problems PDF Online Free

Author :
Publisher : Springer
ISBN 13 :
Total Pages : 516 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis Three-Dimensional Crack Problems by : M.K. Kassir

Download or read book Three-Dimensional Crack Problems written by M.K. Kassir and published by Springer. This book was released on 1975-04-30 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt:

The Development of a Fully Three-dimensional Simulator for Analysis and Design of Hydraulic Fracturing

Download The Development of a Fully Three-dimensional Simulator for Analysis and Design of Hydraulic Fracturing PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 354 pages
Book Rating : 4.:/5 (131 download)

DOWNLOAD NOW!


Book Synopsis The Development of a Fully Three-dimensional Simulator for Analysis and Design of Hydraulic Fracturing by : Khin Yong Lam

Download or read book The Development of a Fully Three-dimensional Simulator for Analysis and Design of Hydraulic Fracturing written by Khin Yong Lam and published by . This book was released on 1985 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Advances in the study of natural fractures in deep and unconventional reservoirs

Download Advances in the study of natural fractures in deep and unconventional reservoirs PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2832514138
Total Pages : 393 pages
Book Rating : 4.8/5 (325 download)

DOWNLOAD NOW!


Book Synopsis Advances in the study of natural fractures in deep and unconventional reservoirs by : Lei Gong

Download or read book Advances in the study of natural fractures in deep and unconventional reservoirs written by Lei Gong and published by Frontiers Media SA. This book was released on 2023-05-08 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Application of Displacement Discontinuity Method to Hydraulic Fracture Propagation in Heterogeneous Rocks

Download Application of Displacement Discontinuity Method to Hydraulic Fracture Propagation in Heterogeneous Rocks PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 418 pages
Book Rating : 4.:/5 (114 download)

DOWNLOAD NOW!


Book Synopsis Application of Displacement Discontinuity Method to Hydraulic Fracture Propagation in Heterogeneous Rocks by : Sho Hirose

Download or read book Application of Displacement Discontinuity Method to Hydraulic Fracture Propagation in Heterogeneous Rocks written by Sho Hirose and published by . This book was released on 2019 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of multi-stage hydraulic fracturing technique in horizontal wells enables us to produce oil and gas at economic rate from shale formations, leading to the shale revolution in the United States. Field observations including production history, microseismic mapping, and coring in fractured zones have revealed that the heterogeneity of shale rocks such as natural fractures is likely to have a large impact on oil and gas production from shale reservoirs. In this dissertation, a new hydraulic fracturing model based on the displacement discontinuity method (DDM) was developed. The major achievements in this research include the extension of DDM to multilayered media, the modeling of the interaction with natural fractures in three dimensions, and the development of a DDM-based hydraulic fracturing simulator. The formulation of DDM was revisited, and the equivalence of DDM and BEM was mathematically demonstrated. DDM was extended to multilayered media by using the method of images. The new DDM was applied to a three-layered medium in plain strain containing vertical and horizontal cracks. A sensitivity study suggests that bi-material solutions are sufficient for three-layered media under plain strain conditions. A DDM-based hydraulic fracturing model was developed. The discretized DDM and flow equations were solved in a segregated or fully coupled manner. A new splitting scheme was proposed to improve the convergence speed of the segregated method. The interaction between hydraulic and natural fractures was modeled for both intersecting and remotely interacting cases in our simulator. Poroelastic effects were partially incorporated into DDM by assuming an undrained condition. It was found that poroelastic effects under the undrained condition were limited to the vicinity of hydraulic fractures. Hydraulic fracturing simulations were performed in the presence of synthetic natural fracture networks. Synthetic microseismic events were generated, and inversion analyses of the synthetic microseismic data were performed. It was suggested that the density of microseismic events was affected by both the areal density and length distribution of natural fractures

Rock Mechanics for Natural Resources and Infrastructure Development - Full Papers

Download Rock Mechanics for Natural Resources and Infrastructure Development - Full Papers PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000758370
Total Pages : 3791 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Rock Mechanics for Natural Resources and Infrastructure Development - Full Papers by : Sergio A.B. Fontoura

Download or read book Rock Mechanics for Natural Resources and Infrastructure Development - Full Papers written by Sergio A.B. Fontoura and published by CRC Press. This book was released on 2019-09-03 with total page 3791 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rock Mechanics for Natural Resources and Infrastructure Development contains the proceedings of the 14th ISRM International Congress (ISRM 2019, Foz do Iguaçu, Brazil, 13-19 September 2019). Starting in 1966 in Lisbon, Portugal, the International Society for Rock Mechanics and Rock Engineering (ISRM) holds its Congress every four years. At this 14th occasion, the Congress brings together researchers, professors, engineers and students around contemporary themes relevant to rock mechanics and rock engineering. Rock Mechanics for Natural Resources and Infrastructure Development contains 7 Keynote Lectures and 449 papers in ten chapters, covering topics ranging from fundamental research in rock mechanics, laboratory and experimental field studies, and petroleum, mining and civil engineering applications. Also included are the prestigious ISRM Award Lectures, the Leopold Muller Award Lecture by professor Peter K. Kaiser. and the Manuel Rocha Award Lecture by Dr. Quinghua Lei. Rock Mechanics for Natural Resources and Infrastructure Development is a must-read for academics, engineers and students involved in rock mechanics and engineering. Proceedings in Earth and geosciences - Volume 6 The ‘Proceedings in Earth and geosciences’ series contains proceedings of peer-reviewed international conferences dealing in earth and geosciences. The main topics covered by the series include: geotechnical engineering, underground construction, mining, rock mechanics, soil mechanics and hydrogeology.

Numerical Modeling of Complex Hydraulic Fracture Development in Unconventional Reservoirs

Download Numerical Modeling of Complex Hydraulic Fracture Development in Unconventional Reservoirs PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Numerical Modeling of Complex Hydraulic Fracture Development in Unconventional Reservoirs by : Kan Wu

Download or read book Numerical Modeling of Complex Hydraulic Fracture Development in Unconventional Reservoirs written by Kan Wu and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Successful creations of multiple hydraulic fractures in horizontal wells are critical for economic development of unconventional reservoirs. The recent advances in diagnostic techniques suggest that multi-fracturing stimulation in unconventional reservoirs has often caused complex fracture geometry. The most important factors that might be responsible for the fracture complexity are fracture interaction and the intersection of the hydraulic and natural fracture. The complexity of fracture geometry results in significant uncertainty in fracturing treatment designs and production optimization. Modeling complex fracture propagation can provide a vital link between fracture geometry and stimulation treatments and play a significant role in economically developing unconventional reservoirs. In this research, a novel fracture propagation model was developed to simulate complex hydraulic fracture propagation in unconventional reservoirs. The model coupled rock deformation with fluid flow in the fractures and the horizontal wellbore. A Simplified Three Dimensional Displacement Discontinuity Method (S3D DDM) was proposed to describe rock deformation, calculating fracture opening and shearing as well as fracture interaction. This simplified 3D method is much more accurate than faster pseudo-3D methods for describing multiple fracture propagation but requires significantly less computational effort than fully three-dimensional methods. The mechanical interaction can enhance opening or induce closing of certain crack elements or non-planar propagation. Fluid flow in the fracture and the associated pressure drop were based on the lubrication theory. Fluid flow in the horizontal wellbore was treated as an electrical circuit network to compute the partition of flow rate between multiple fractures and maintain pressure compatibility between the horizontal wellbore and multiple fractures. Iteratively and fully coupled procedures were employed to couple rock deformation and fluid flow by the Newton-Raphson method and the Picard iteration method. The numerical model was applied to understand physical mechanisms of complex fracture geometry and offer insights for operators to design fracturing treatments and optimize the production. Modeling results suggested that non-planar fracture geometry could be generated by an initial fracture with an angle deviating from the direction of the maximum horizontal stress, or by multiple fracture propagation in closed spacing. Stress shadow effects are induced by opening fractures and affect multiple fracture propagation. For closely spaced multiple fractures growing simultaneously, width of the interior fractures are usually significantly restricted, and length of the exterior fractures are much longer than that of the interior fractures. The exterior fractures receive most of fluid and dominate propagation, resulting in immature development of the interior fractures. Natural fractures could further complicate fracture geometry. When a hydraulic fracture encounters a natural fracture and propagates along the pre-existing path of the natural fracture, fracture width on the natural fracture segment will be restricted and injection pressure will increase, as a result of stress shadow effects from hydraulic fracture segments and additional closing stresses from in-situ stress field. When multiple fractures propagate in naturally fracture reservoirs, complex fracture networks could be induced, which are affected by perforation cluster spacing, differential stress and natural fracture patterns. Combination of our numerical model and diagnostic methods (e.g. Microseismicity, DTS and DAS) is an effective approach to accurately characterize the complex fracture geometry. Furthermore, the physics-based complex fracture geometry provided by our model can be imported into reservoir simulation models for production analysis.