Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Solvability Of Nonlinear Equations And Boundary Value Problems
Download Solvability Of Nonlinear Equations And Boundary Value Problems full books in PDF, epub, and Kindle. Read online Solvability Of Nonlinear Equations And Boundary Value Problems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Solvability of Nonlinear Equations and Boundary Value Problems by : Svatopluk Fucik
Download or read book Solvability of Nonlinear Equations and Boundary Value Problems written by Svatopluk Fucik and published by Springer Science & Business Media. This book was released on 1981-02-28 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Author :Alexander Andreevych Boichuk Publisher :Walter de Gruyter GmbH & Co KG ISBN 13 :3110378442 Total Pages :314 pages Book Rating :4.1/5 (13 download)
Book Synopsis Generalized Inverse Operators by : Alexander Andreevych Boichuk
Download or read book Generalized Inverse Operators written by Alexander Andreevych Boichuk and published by Walter de Gruyter GmbH & Co KG. This book was released on 2016-08-22 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the foundations of the theory of boundary-value problems for various classes of systems of differential-operator equations whose linear part is represented by Fredholm operators of the general form. A common point of view on numerous classes of problems that were traditionally studied independently of each other enables us to study, in a natural way, the theory of these problems, to supplement and improve the existing results, and in certain cases, study some of these problems for the first time. With the help of the technique of generalized inverse operators, the Vishik– Lyusternik method, and iterative methods, we perform a detailed investigation of the problems of existence, bifurcations, and branching of the solutions of linear and nonlinear boundary-value problems for various classes of differential-operator systems and propose new procedures for their construction. For more than 11 years that have passed since the appearance of the first edition of the monograph, numerous new publications of the authors in this direction have appeared. In this connection, it became necessary to make some additions and corrections to the previous extensively cited edition, which is still of signifi cant interest for the researchers. For researchers, teachers, post-graduate students, and students of physical and mathematical departments of universities. Contents: Preliminary Information Generalized Inverse Operators in Banach Spaces Pseudoinverse Operators in Hilbert Spaces Boundary-Value Problems for Operator Equations Boundary-Value Problems for Systems of Ordinary Differential Equations Impulsive Boundary-Value Problems for Systems of Ordinary Differential Equations Solutions of Differential and Difference Systems Bounded on the Entire Real Axis
Book Synopsis Two-Point Boundary Value Problems: Lower and Upper Solutions by : C. De Coster
Download or read book Two-Point Boundary Value Problems: Lower and Upper Solutions written by C. De Coster and published by Elsevier. This book was released on 2006-03-21 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the method of lower and upper solutions for ordinary differential equations. This method is known to be both easy and powerful to solve second order boundary value problems. Besides an extensive introduction to the method, the first half of the book describes some recent and more involved results on this subject. These concern the combined use of the method with degree theory, with variational methods and positive operators. The second half of the book concerns applications. This part exemplifies the method and provides the reader with a fairly large introduction to the problematic of boundary value problems. Although the book concerns mainly ordinary differential equations, some attention is given to other settings such as partial differential equations or functional differential equations. A detailed history of the problem is described in the introduction.· Presents the fundamental features of the method· Construction of lower and upper solutions in problems· Working applications and illustrated theorems by examples· Description of the history of the method and Bibliographical notes
Book Synopsis The Boundary Value Problems of Mathematical Physics by : O.A. Ladyzhenskaya
Download or read book The Boundary Value Problems of Mathematical Physics written by O.A. Ladyzhenskaya and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the present edition I have included "Supplements and Problems" located at the end of each chapter. This was done with the aim of illustrating the possibilities of the methods contained in the book, as well as with the desire to make good on what I have attempted to do over the course of many years for my students-to awaken their creativity, providing topics for independent work. The source of my own initial research was the famous two-volume book Methods of Mathematical Physics by D. Hilbert and R. Courant, and a series of original articles and surveys on partial differential equations and their applications to problems in theoretical mechanics and physics. The works of K. o. Friedrichs, which were in keeping with my own perception of the subject, had an especially strong influence on me. I was guided by the desire to prove, as simply as possible, that, like systems of n linear algebraic equations in n unknowns, the solvability of basic boundary value (and initial-boundary value) problems for partial differential equations is a consequence of the uniqueness theorems in a "sufficiently large" function space. This desire was successfully realized thanks to the introduction of various classes of general solutions and to an elaboration of the methods of proof for the corresponding uniqueness theorems. This was accomplished on the basis of comparatively simple integral inequalities for arbitrary functions and of a priori estimates of the solutions of the problems without enlisting any special representations of those solutions.
Book Synopsis Non Linear Analysis and Boundary Value Problems for Ordinary Differential Equations by : F. Zanolin
Download or read book Non Linear Analysis and Boundary Value Problems for Ordinary Differential Equations written by F. Zanolin and published by Springer. This book was released on 2014-05-04 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: The area covered by this volume represents a broad choice of some interesting research topics in the field of dynamical systems and applications of nonlinear analysis to ordinary and partial differential equations. The contributed papers, written by well known specialists, make this volume a useful tool both for the experts (who can find recent and new results) and for those who are interested in starting a research work in one of these topics (who can find some updated and carefully presented papers on the state of the art of the corresponding subject).
Book Synopsis Non Linear Analysis and Boundary Value Problems for Ordinary Differential Equations by : F. Zanolin
Download or read book Non Linear Analysis and Boundary Value Problems for Ordinary Differential Equations written by F. Zanolin and published by . This book was released on 2014-09-01 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Fully Nonlinear Elliptic Equations by : Luis A. Caffarelli
Download or read book Fully Nonlinear Elliptic Equations written by Luis A. Caffarelli and published by American Mathematical Soc.. This book was released on 1995 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of the book is to extend classical regularity theorems for solutions of linear elliptic partial differential equations to the context of fully nonlinear elliptic equations. This class of equations often arises in control theory, optimization, and other applications. The authors give a detailed presentation of all the necessary techniques. Instead of treating these techniques in their greatest generality, they outline the key ideas and prove the results needed for developing the subsequent theory. Topics discussed in the book include the theory of viscosity solutions for nonlinear equations, the Alexandroff estimate and Krylov-Safonov Harnack-type inequality for viscosity solutions, uniqueness theory for viscosity solutions, Evans and Krylov regularity theory for convex fully nonlinear equations, and regularity theory for fully nonlinear equations with variable coefficients.
Book Synopsis Fractional Calculus and its Applications in Physics by : Dumitru Baleanu
Download or read book Fractional Calculus and its Applications in Physics written by Dumitru Baleanu and published by Frontiers Media SA. This book was released on 2019-11-15 with total page 93 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Difference Equations and Inequalities by : Ravi P. Agarwal
Download or read book Difference Equations and Inequalities written by Ravi P. Agarwal and published by CRC Press. This book was released on 2000-01-27 with total page 1010 pages. Available in PDF, EPUB and Kindle. Book excerpt: A study of difference equations and inequalities. This second edition offers real-world examples and uses of difference equations in probability theory, queuing and statistical problems, stochastic time series, combinatorial analysis, number theory, geometry, electrical networks, quanta in radiation, genetics, economics, psychology, sociology, and
Book Synopsis Methods for Analysis of Nonlinear Elliptic Boundary Value Problems by : I. V. Skrypnik
Download or read book Methods for Analysis of Nonlinear Elliptic Boundary Value Problems written by I. V. Skrypnik and published by American Mathematical Soc.. This book was released on 1994-01-01 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of nonlinear elliptic equations is currently one of the most actively developing branches of the theory of partial differential equations. This book investigates boundary value problems for nonlinear elliptic equations of arbitrary order. In addition to monotone operator methods, a broad range of applications of topological methods to nonlinear differential equations is presented: solvability, estimation of the number of solutions, and the branching of solutions of nonlinear equations. Skrypnik establishes, by various procedures, a priori estimates and the regularity of solutions of nonlinear elliptic equations of arbitrary order. Also covered are methods of homogenization of nonlinear elliptic problems in perforated domains. The book is suitable for use in graduate courses in differential equations and nonlinear functional analysis.
Book Synopsis Blow-up in Nonlinear Sobolev Type Equations by : Alexander B. Al'shin
Download or read book Blow-up in Nonlinear Sobolev Type Equations written by Alexander B. Al'shin and published by Walter de Gruyter. This book was released on 2011-05-26 with total page 661 pages. Available in PDF, EPUB and Kindle. Book excerpt: The monograph is devoted to the study of initial-boundary-value problems for multi-dimensional Sobolev-type equations over bounded domains. The authors consider both specific initial-boundary-value problems and abstract Cauchy problems for first-order (in the time variable) differential equations with nonlinear operator coefficients with respect to spatial variables. The main aim of the monograph is to obtain sufficient conditions for global (in time) solvability, to obtain sufficient conditions for blow-up of solutions at finite time, and to derive upper and lower estimates for the blow-up time. The abstract results apply to a large variety of problems. Thus, the well-known Benjamin-Bona-Mahony-Burgers equation and Rosenau-Burgers equations with sources and many other physical problems are considered as examples. Moreover, the method proposed for studying blow-up phenomena for nonlinear Sobolev-type equations is applied to equations which play an important role in physics. For instance, several examples describe different electrical breakdown mechanisms in crystal semiconductors, as well as the breakdown in the presence of sources of free charges in a self-consistent electric field. The monograph contains a vast list of references (440 items) and gives an overall view of the contemporary state-of-the-art of the mathematical modeling of various important problems arising in physics. Since the list of references contains many papers which have been published previously only in Russian research journals, it may also serve as a guide to the Russian literature.
Book Synopsis Lectures on Partial Differential Equations by : Vladimir I. Arnold
Download or read book Lectures on Partial Differential Equations written by Vladimir I. Arnold and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Choice Outstanding Title! (January 2006) This richly illustrated text covers the Cauchy and Neumann problems for the classical linear equations of mathematical physics. A large number of problems are sprinkled throughout the book, and a full set of problems from examinations given in Moscow are included at the end. Some of these problems are quite challenging! What makes the book unique is Arnold's particular talent at holding a topic up for examination from a new and fresh perspective. He likes to blow away the fog of generality that obscures so much mathematical writing and reveal the essentially simple intuitive ideas underlying the subject. No other mathematical writer does this quite so well as Arnold.
Book Synopsis Partial Differential Relations by : Misha Gromov
Download or read book Partial Differential Relations written by Misha Gromov and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classical theory of partial differential equations is rooted in physics, where equations (are assumed to) describe the laws of nature. Law abiding functions, which satisfy such an equation, are very rare in the space of all admissible functions (regardless of a particular topology in a function space). Moreover, some additional (like initial or boundary) conditions often insure the uniqueness of solutions. The existence of these is usually established with some apriori estimates which locate a possible solution in a given function space. We deal in this book with a completely different class of partial differential equations (and more general relations) which arise in differential geometry rather than in physics. Our equations are, for the most part, undetermined (or, at least, behave like those) and their solutions are rather dense in spaces of functions. We solve and classify solutions of these equations by means of direct (and not so direct) geometric constructions. Our exposition is elementary and the proofs of the basic results are selfcontained. However, there is a number of examples and exercises (of variable difficulty), where the treatment of a particular equation requires a certain knowledge of pertinent facts in the surrounding field. The techniques we employ, though quite general, do not cover all geometrically interesting equations. The border of the unexplored territory is marked by a number of open questions throughout the book.
Book Synopsis Nonlinear Differential Equations and Dynamical Systems by : Feliz Manuel Minhós
Download or read book Nonlinear Differential Equations and Dynamical Systems written by Feliz Manuel Minhós and published by MDPI. This book was released on 2021-04-15 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Special Edition contains new results on Differential and Integral Equations and Systems, covering higher-order Initial and Boundary Value Problems, fractional differential and integral equations and applications, non-local optimal control, inverse, and higher-order nonlinear boundary value problems, distributional solutions in the form of a finite series of the Dirac delta function and its derivatives, asymptotic properties’ oscillatory theory for neutral nonlinear differential equations, the existence of extremal solutions via monotone iterative techniques, predator–prey interaction via fractional-order models, among others. Our main goal is not only to show new trends in this field but also to showcase and provide new methods and techniques that can lead to future research.
Book Synopsis Two-point Boundary Value Problems: Shooting Methods by : Sanford M. Roberts
Download or read book Two-point Boundary Value Problems: Shooting Methods written by Sanford M. Roberts and published by Elsevier Publishing Company. This book was released on 1972 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Adjoint Equations and Perturbation Algorithms in Nonlinear Problems by : Guri I. Marchuk
Download or read book Adjoint Equations and Perturbation Algorithms in Nonlinear Problems written by Guri I. Marchuk and published by CRC Press. This book was released on 2018-04-24 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sparked by demands inherent to the mathematical study of pollution, intensive industry, global warming, and the biosphere, Adjoint Equations and Perturbation Algorithms in Nonlinear Problems is the first book ever to systematically present the theory of adjoint equations for nonlinear problems, as well as their application to perturbation algorithms. This new approach facilitates analysis of observational data, the application of adjoint equations to retrospective study of processes governed by imitation models, and the study of computer models themselves. Specifically, the book discusses: Principles for constructing adjoint operators in nonlinear problems Properties of adjoint operators and solvability conditions for adjoint equations Perturbation algorithms using the adjoint equations theory for nonlinear problems in transport theory, quasilinear motion, substance transfer, and nonlinear data assimilation Known results on adjoint equations and perturbation algorithms in nonlinear problems This groundbreaking text contains some results that have no analogs in the scientific literature, opening unbounded possibilities in construction and application of adjoint equations to nonlinear problems of mathematical physics.
Author :Vladimir B. Vasil'ev Publisher :Springer Science & Business Media ISBN 13 :9780792365310 Total Pages :192 pages Book Rating :4.3/5 (653 download)
Book Synopsis Wave Factorization of Elliptic Symbols: Theory and Applications by : Vladimir B. Vasil'ev
Download or read book Wave Factorization of Elliptic Symbols: Theory and Applications written by Vladimir B. Vasil'ev and published by Springer Science & Business Media. This book was released on 2000-09-30 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is devoted to the development of a new approach to studying elliptic differential and integro-differential (pseudodifferential) equations and their boundary problems in non-smooth domains. This approach is based on a special representation of symbols of elliptic operators called wave factorization. In canonical domains, for example, the angle on a plane or a wedge in space, this yields a general solution, and then leads to the statement of a boundary problem. Wave factorization has also been used to obtain explicit formulas for solving some problems in diffraction and elasticity theory. Audience: This volume will be of interest to mathematicians, engineers, and physicists whose work involves partial differential equations, integral equations, operator theory, elasticity and viscoelasticity, and electromagnetic theory. It can also be recommended as a text for graduate and postgraduate students for courses in singular integral and pseudodifferential equations.