Solutions of Fixed Point Problems with Computational Errors

Download Solutions of Fixed Point Problems with Computational Errors PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031508793
Total Pages : 392 pages
Book Rating : 4.0/5 (315 download)

DOWNLOAD NOW!


Book Synopsis Solutions of Fixed Point Problems with Computational Errors by : Alexander J. Zaslavski

Download or read book Solutions of Fixed Point Problems with Computational Errors written by Alexander J. Zaslavski and published by Springer Nature. This book was released on with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Approximate Solutions of Common Fixed-Point Problems

Download Approximate Solutions of Common Fixed-Point Problems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319332554
Total Pages : 457 pages
Book Rating : 4.3/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Approximate Solutions of Common Fixed-Point Problems by : Alexander J. Zaslavski

Download or read book Approximate Solutions of Common Fixed-Point Problems written by Alexander J. Zaslavski and published by Springer. This book was released on 2016-06-30 with total page 457 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents results on the convergence behavior of algorithms which are known as vital tools for solving convex feasibility problems and common fixed point problems. The main goal for us in dealing with a known computational error is to find what approximate solution can be obtained and how many iterates one needs to find it. According to know results, these algorithms should converge to a solution. In this exposition, these algorithms are studied, taking into account computational errors which remain consistent in practice. In this case the convergence to a solution does not take place. We show that our algorithms generate a good approximate solution if computational errors are bounded from above by a small positive constant. Beginning with an introduction, this monograph moves on to study: · dynamic string-averaging methods for common fixed point problems in a Hilbert space · dynamic string methods for common fixed point problems in a metric space“/p> · dynamic string-averaging version of the proximal algorithm · common fixed point problems in metric spaces · common fixed point problems in the spaces with distances of the Bregman type · a proximal algorithm for finding a common zero of a family of maximal monotone operators · subgradient projections algorithms for convex feasibility problems in Hilbert spaces

Optimization on Solution Sets of Common Fixed Point Problems

Download Optimization on Solution Sets of Common Fixed Point Problems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030788490
Total Pages : 434 pages
Book Rating : 4.0/5 (37 download)

DOWNLOAD NOW!


Book Synopsis Optimization on Solution Sets of Common Fixed Point Problems by : Alexander J. Zaslavski

Download or read book Optimization on Solution Sets of Common Fixed Point Problems written by Alexander J. Zaslavski and published by Springer Nature. This book was released on 2021-08-09 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to a detailed study of the subgradient projection method and its variants for convex optimization problems over the solution sets of common fixed point problems and convex feasibility problems. These optimization problems are investigated to determine good solutions obtained by different versions of the subgradient projection algorithm in the presence of sufficiently small computational errors. The use of selected algorithms is highlighted including the Cimmino type subgradient, the iterative subgradient, and the dynamic string-averaging subgradient. All results presented are new. Optimization problems where the underlying constraints are the solution sets of other problems, frequently occur in applied mathematics. The reader should not miss the section in Chapter 1 which considers some examples arising in the real world applications. The problems discussed have an important impact in optimization theory as well. The book will be useful for researches interested in the optimization theory and its applications.

Convex Optimization with Computational Errors

Download Convex Optimization with Computational Errors PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030378225
Total Pages : 364 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Convex Optimization with Computational Errors by : Alexander J. Zaslavski

Download or read book Convex Optimization with Computational Errors written by Alexander J. Zaslavski and published by Springer Nature. This book was released on 2020-01-31 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the study of approximate solutions of optimization problems in the presence of computational errors. It contains a number of results on the convergence behavior of algorithms in a Hilbert space, which are known as important tools for solving optimization problems. The research presented in the book is the continuation and the further development of the author's (c) 2016 book Numerical Optimization with Computational Errors, Springer 2016. Both books study the algorithms taking into account computational errors which are always present in practice. The main goal is, for a known computational error, to find out what an approximate solution can be obtained and how many iterates one needs for this. The main difference between this new book and the 2016 book is that in this present book the discussion takes into consideration the fact that for every algorithm, its iteration consists of several steps and that computational errors for different steps are generally, different. This fact, which was not taken into account in the previous book, is indeed important in practice. For example, the subgradient projection algorithm consists of two steps. The first step is a calculation of a subgradient of the objective function while in the second one we calculate a projection on the feasible set. In each of these two steps there is a computational error and these two computational errors are different in general. It may happen that the feasible set is simple and the objective function is complicated. As a result, the computational error, made when one calculates the projection, is essentially smaller than the computational error of the calculation of the subgradient. Clearly, an opposite case is possible too. Another feature of this book is a study of a number of important algorithms which appeared recently in the literature and which are not discussed in the previous book. This monograph contains 12 chapters. Chapter 1 is an introduction. In Chapter 2 we study the subgradient projection algorithm for minimization of convex and nonsmooth functions. We generalize the results of [NOCE] and establish results which has no prototype in [NOCE]. In Chapter 3 we analyze the mirror descent algorithm for minimization of convex and nonsmooth functions, under the presence of computational errors. For this algorithm each iteration consists of two steps. The first step is a calculation of a subgradient of the objective function while in the second one we solve an auxiliary minimization problem on the set of feasible points. In each of these two steps there is a computational error. We generalize the results of [NOCE] and establish results which has no prototype in [NOCE]. In Chapter 4 we analyze the projected gradient algorithm with a smooth objective function under the presence of computational errors. In Chapter 5 we consider an algorithm, which is an extension of the projection gradient algorithm used for solving linear inverse problems arising in signal/image processing. In Chapter 6 we study continuous subgradient method and continuous subgradient projection algorithm for minimization of convex nonsmooth functions and for computing the saddle points of convex-concave functions, under the presence of computational errors. All the results of this chapter has no prototype in [NOCE]. In Chapters 7-12 we analyze several algorithms under the presence of computational errors which were not considered in [NOCE]. Again, each step of an iteration has a computational errors and we take into account that these errors are, in general, different. An optimization problems with a composite objective function is studied in Chapter 7. A zero-sum game with two-players is considered in Chapter 8. A predicted decrease approximation-based method is used in Chapter 9 for constrained convex optimization. Chapter 10 is devoted to minimization of quasiconvex functions. Minimization of sharp weakly convex functions is discussed in Chapter 11. Chapter 12 is devoted to a generalized projected subgradient method for minimization of a convex function over a set which is not necessarily convex. The book is of interest for researchers and engineers working in optimization. It also can be useful in preparation courses for graduate students. The main feature of the book which appeals specifically to this audience is the study of the influence of computational errors for several important optimization algorithms. The book is of interest for experts in applications of optimization to engineering and economics.

Algorithms for Solving Common Fixed Point Problems

Download Algorithms for Solving Common Fixed Point Problems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319774379
Total Pages : 320 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Algorithms for Solving Common Fixed Point Problems by : Alexander J. Zaslavski

Download or read book Algorithms for Solving Common Fixed Point Problems written by Alexander J. Zaslavski and published by Springer. This book was released on 2018-05-02 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book details approximate solutions to common fixed point problems and convex feasibility problems in the presence of perturbations. Convex feasibility problems search for a common point of a finite collection of subsets in a Hilbert space; common fixed point problems pursue a common fixed point of a finite collection of self-mappings in a Hilbert space. A variety of algorithms are considered in this book for solving both types of problems, the study of which has fueled a rapidly growing area of research. This monograph is timely and highlights the numerous applications to engineering, computed tomography, and radiation therapy planning. Totaling eight chapters, this book begins with an introduction to foundational material and moves on to examine iterative methods in metric spaces. The dynamic string-averaging methods for common fixed point problems in normed space are analyzed in Chapter 3. Dynamic string methods, for common fixed point problems in a metric space are introduced and discussed in Chapter 4. Chapter 5 is devoted to the convergence of an abstract version of the algorithm which has been called component-averaged row projections (CARP). Chapter 6 studies a proximal algorithm for finding a common zero of a family of maximal monotone operators. Chapter 7 extends the results of Chapter 6 for a dynamic string-averaging version of the proximal algorithm. In Chapters 8 subgradient projections algorithms for convex feasibility problems are examined for infinite dimensional Hilbert spaces.

Numerical Optimization with Computational Errors

Download Numerical Optimization with Computational Errors PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319309218
Total Pages : 308 pages
Book Rating : 4.3/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Numerical Optimization with Computational Errors by : Alexander J. Zaslavski

Download or read book Numerical Optimization with Computational Errors written by Alexander J. Zaslavski and published by Springer. This book was released on 2016-04-22 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies the approximate solutions of optimization problems in the presence of computational errors. A number of results are presented on the convergence behavior of algorithms in a Hilbert space; these algorithms are examined taking into account computational errors. The author illustrates that algorithms generate a good approximate solution, if computational errors are bounded from above by a small positive constant. Known computational errors are examined with the aim of determining an approximate solution. Researchers and students interested in the optimization theory and its applications will find this book instructive and informative. This monograph contains 16 chapters; including a chapters devoted to the subgradient projection algorithm, the mirror descent algorithm, gradient projection algorithm, the Weiszfelds method, constrained convex minimization problems, the convergence of a proximal point method in a Hilbert space, the continuous subgradient method, penalty methods and Newton’s method.

The Projected Subgradient Algorithm in Convex Optimization

Download The Projected Subgradient Algorithm in Convex Optimization PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030603008
Total Pages : 148 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis The Projected Subgradient Algorithm in Convex Optimization by : Alexander J. Zaslavski

Download or read book The Projected Subgradient Algorithm in Convex Optimization written by Alexander J. Zaslavski and published by Springer Nature. This book was released on 2020-11-25 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: This focused monograph presents a study of subgradient algorithms for constrained minimization problems in a Hilbert space. The book is of interest for experts in applications of optimization to engineering and economics. The goal is to obtain a good approximate solution of the problem in the presence of computational errors. The discussion takes into consideration the fact that for every algorithm its iteration consists of several steps and that computational errors for different steps are different, in general. The book is especially useful for the reader because it contains solutions to a number of difficult and interesting problems in the numerical optimization. The subgradient projection algorithm is one of the most important tools in optimization theory and its applications. An optimization problem is described by an objective function and a set of feasible points. For this algorithm each iteration consists of two steps. The first step requires a calculation of a subgradient of the objective function; the second requires a calculation of a projection on the feasible set. The computational errors in each of these two steps are different. This book shows that the algorithm discussed, generates a good approximate solution, if all the computational errors are bounded from above by a small positive constant. Moreover, if computational errors for the two steps of the algorithm are known, one discovers an approximate solution and how many iterations one needs for this. In addition to their mathematical interest, the generalizations considered in this book have a significant practical meaning.

Approximate Fixed Points of Nonexpansive Mappings

Download Approximate Fixed Points of Nonexpansive Mappings PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031707109
Total Pages : 535 pages
Book Rating : 4.0/5 (317 download)

DOWNLOAD NOW!


Book Synopsis Approximate Fixed Points of Nonexpansive Mappings by : Alexander J. Zaslavski

Download or read book Approximate Fixed Points of Nonexpansive Mappings written by Alexander J. Zaslavski and published by Springer Nature. This book was released on with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Computational Fluid Dynamics and Heat Transfer

Download Computational Fluid Dynamics and Heat Transfer PDF Online Free

Author :
Publisher : WIT Press
ISBN 13 : 1845641442
Total Pages : 513 pages
Book Rating : 4.8/5 (456 download)

DOWNLOAD NOW!


Book Synopsis Computational Fluid Dynamics and Heat Transfer by : Ryoichi Amano

Download or read book Computational Fluid Dynamics and Heat Transfer written by Ryoichi Amano and published by WIT Press. This book was released on 2011 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: Heat transfer and fluid flow issues are of great significance and this state-of-the-art edited book with reference to new and innovative numerical methods will make a contribution for researchers in academia and research organizations, as well as industrial scientists and college students. The book provides comprehensive chapters on research and developments in emerging topics in computational methods, e.g., the finite volume method, finite element method as well as turbulent flow computational methods. Fundamentals of the numerical methods, comparison of various higher-order schemes for convection-diffusion terms, turbulence modeling, the pressure-velocity coupling, mesh generation and the handling of arbitrary geometries are presented. Results from engineering applications are provided. Chapters have been co-authored by eminent researchers.

Numerical Methods for Engineers and Scientists Using MATLAB®

Download Numerical Methods for Engineers and Scientists Using MATLAB® PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1498777449
Total Pages : 471 pages
Book Rating : 4.4/5 (987 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Engineers and Scientists Using MATLAB® by : Ramin S. Esfandiari

Download or read book Numerical Methods for Engineers and Scientists Using MATLAB® written by Ramin S. Esfandiari and published by CRC Press. This book was released on 2017-04-25 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a pragmatic, methodical and easy-to-follow presentation of numerical methods and their effective implementation using MATLAB, which is introduced at the outset. The author introduces techniques for solving equations of a single variable and systems of equations, followed by curve fitting and interpolation of data. The book also provides detailed coverage of numerical differentiation and integration, as well as numerical solutions of initial-value and boundary-value problems. The author then presents the numerical solution of the matrix eigenvalue problem, which entails approximation of a few or all eigenvalues of a matrix. The last chapter is devoted to numerical solutions of partial differential equations that arise in engineering and science. Each method is accompanied by at least one fully worked-out example showing essential details involved in preliminary hand calculations, as well as computations in MATLAB.

Estimating the Error of Numerical Solutions of Systems of Reaction-Diffusion Equations

Download Estimating the Error of Numerical Solutions of Systems of Reaction-Diffusion Equations PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821820729
Total Pages : 125 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Estimating the Error of Numerical Solutions of Systems of Reaction-Diffusion Equations by : Donald J. Estep

Download or read book Estimating the Error of Numerical Solutions of Systems of Reaction-Diffusion Equations written by Donald J. Estep and published by American Mathematical Soc.. This book was released on 2000 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper is concerned with the computational estimation of the error of numerical solutions of potentially degenerate reaction-diffusion equations. The underlying motivation is a desire to compute accurate estimates as opposed to deriving inaccurate analytic upper bounds. In this paper, we outline, analyze, and test an approach to obtain computational error estimates based on the introduction of the residual error of the numerical solution and in which the effects of the accumulation of errors are estimated computationally. We begin by deriving an a posteriori relationship between the error of a numerical solution and its residual error using a variational argument. This leads to the introduction of stability factors, which measure the sensitivity of solutions to various kinds of perturbations. Next, we perform some general analysis on the residual errors and stability factors to determine when they are defined and to bound their size. Then we describe the practical use of the theory to estimate the errors of numerical solutions computationally. Several key issues arise in the implementation that remain unresolved and we present partial results and numerical experiments about these points. We use this approach to estimate the error of numerical solutions of nine standard reaction-diffusion models and make a systematic comparison of the time scale over which accurate numerical solutions can be computed for these problems. We also perform a numerical test of the accuracy and reliability of the computational error estimate using the bistable equation. Finally, we apply the general theory to the class of problems that admit invariant regions for the solutions, which includes seven of the main examples. Under this additional stability assumption, we obtain a convergence result in the form of an upper bound on the error from the a posteriori error estimate. We conclude by discussing the preservation of invariant regions under discretization.

Computational Fluid and Solid Mechanics 2003

Download Computational Fluid and Solid Mechanics 2003 PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 008052947X
Total Pages : 2485 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Computational Fluid and Solid Mechanics 2003 by : K.J Bathe

Download or read book Computational Fluid and Solid Mechanics 2003 written by K.J Bathe and published by Elsevier. This book was released on 2003-06-02 with total page 2485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bringing together the world's leading researchers and practitioners of computational mechanics, these new volumes meet and build on the eight key challenges for research and development in computational mechanics.Researchers have recently identified eight critical research tasks facing the field of computational mechanics. These tasks have come about because it appears possible to reach a new level of mathematical modelling and numerical solution that will lead to a much deeper understanding of nature and to great improvements in engineering design.The eight tasks are: - The automatic solution of mathematical models - Effective numerical schemes for fluid flows - The development of an effective mesh-free numerical solution method - The development of numerical procedures for multiphysics problems - The development of numerical procedures for multiscale problems - The modelling of uncertainties - The analysis of complete life cycles of systems - Education - teaching sound engineering and scientific judgement Readers of Computational Fluid and Solid Mechanics 2003 will be able to apply the combined experience of many of the world's leading researchers to their own research needs. Those in academic environments will gain a better insight into the needs and constraints of the industries they are involved with; those in industry will gain a competitive advantage by gaining insight into the cutting edge research being carried out by colleagues in academia. Features - Bridges the gap between academic researchers and practitioners in industry - Outlines the eight main challenges facing Research and Design in Computational mechanics and offers new insights into the shifting the research agenda - Provides a vision of how strong, basic and exciting education at university can be harmonized with life-long learning to obtain maximum value from the new powerful tools of analysis

Solving PDEs in C++

Download Solving PDEs in C++ PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611972167
Total Pages : 775 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Solving PDEs in C++ by : Yair Shapira

Download or read book Solving PDEs in C++ written by Yair Shapira and published by SIAM. This book was released on 2012-06-07 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this much-expanded second edition, author Yair Shapira presents new applications and a substantial extension of the original object-oriented framework to make this popular and comprehensive book even easier to understand and use. It not only introduces the C and C++ programming languages, but also shows how to use them in the numerical solution of partial differential equations (PDEs). The book leads readers through the entire solution process, from the original PDE, through the discretization stage, to the numerical solution of the resulting algebraic system. The high level of abstraction available in C++ is particularly useful in the implementation of complex mathematical objects, such as unstructured mesh, sparse matrix, and multigrid hierarchy, often used in numerical modeling. The well-debugged and tested code segments implement the numerical methods efficiently and transparently in a unified object-oriented approach.

Fixed-Point Algorithms for Inverse Problems in Science and Engineering

Download Fixed-Point Algorithms for Inverse Problems in Science and Engineering PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441995692
Total Pages : 409 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Fixed-Point Algorithms for Inverse Problems in Science and Engineering by : Heinz H. Bauschke

Download or read book Fixed-Point Algorithms for Inverse Problems in Science and Engineering written by Heinz H. Bauschke and published by Springer Science & Business Media. This book was released on 2011-05-27 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Fixed-Point Algorithms for Inverse Problems in Science and Engineering" presents some of the most recent work from top-notch researchers studying projection and other first-order fixed-point algorithms in several areas of mathematics and the applied sciences. The material presented provides a survey of the state-of-the-art theory and practice in fixed-point algorithms, identifying emerging problems driven by applications, and discussing new approaches for solving these problems. This book incorporates diverse perspectives from broad-ranging areas of research including, variational analysis, numerical linear algebra, biotechnology, materials science, computational solid-state physics, and chemistry. Topics presented include: Theory of Fixed-point algorithms: convex analysis, convex optimization, subdifferential calculus, nonsmooth analysis, proximal point methods, projection methods, resolvent and related fixed-point theoretic methods, and monotone operator theory. Numerical analysis of fixed-point algorithms: choice of step lengths, of weights, of blocks for block-iterative and parallel methods, and of relaxation parameters; regularization of ill-posed problems; numerical comparison of various methods. Areas of Applications: engineering (image and signal reconstruction and decompression problems), computer tomography and radiation treatment planning (convex feasibility problems), astronomy (adaptive optics), crystallography (molecular structure reconstruction), computational chemistry (molecular structure simulation) and other areas. Because of the variety of applications presented, this book can easily serve as a basis for new and innovated research and collaboration.

Issues in Logic, Operations, and Computational Mathematics and Geometry: 2013 Edition

Download Issues in Logic, Operations, and Computational Mathematics and Geometry: 2013 Edition PDF Online Free

Author :
Publisher : ScholarlyEditions
ISBN 13 : 1490110119
Total Pages : 1187 pages
Book Rating : 4.4/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Issues in Logic, Operations, and Computational Mathematics and Geometry: 2013 Edition by :

Download or read book Issues in Logic, Operations, and Computational Mathematics and Geometry: 2013 Edition written by and published by ScholarlyEditions. This book was released on 2013-05-01 with total page 1187 pages. Available in PDF, EPUB and Kindle. Book excerpt: Issues in Logic, Operations, and Computational Mathematics and Geometry: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Random Structures and Algorithms. The editors have built Issues in Logic, Operations, and Computational Mathematics and Geometry: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Random Structures and Algorithms in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Logic, Operations, and Computational Mathematics and Geometry: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Rounding Errors in Algebraic Processes

Download Rounding Errors in Algebraic Processes PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611977525
Total Pages : 177 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Rounding Errors in Algebraic Processes by : James Hardy Wilkinson

Download or read book Rounding Errors in Algebraic Processes written by James Hardy Wilkinson and published by SIAM. This book was released on 2023-05-25 with total page 177 pages. Available in PDF, EPUB and Kindle. Book excerpt: "[This book] combines a rigorous mathematical analysis with a practicality that stems from an obvious first-hand contact with the actual numerical computation. The well-chosen examples alone show vividly both the importance of the study of rounding errors and the perils of its neglect." A. A. Grau, SIAM Review (1966) Rounding Errors in Algebraic Processes was the first book to give systematic analyses of the effects of rounding errors on a variety of key computations involving polynomials and matrices. A detailed analysis is given of the rounding errors made in the elementary arithmetic operations and inner products, for both floating-point arithmetic and fixed-point arithmetic. The results are then applied in the error analyses of a variety of computations involving polynomials as well as the solution of linear systems, matrix inversion, and eigenvalue computations. The conditioning of these problems is investigated. The aim was to provide a unified method of treatment, and emphasis is placed on the underlying concepts. This book is intended for mathematicians, computer scientists, those interested in the historical development of numerical analysis, and students in numerical analysis and numerical linear algebra.

KWIC Index for Numerical Algebra

Download KWIC Index for Numerical Algebra PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 552 pages
Book Rating : 4.F/5 ( download)

DOWNLOAD NOW!


Book Synopsis KWIC Index for Numerical Algebra by : Alston Scott Householder

Download or read book KWIC Index for Numerical Algebra written by Alston Scott Householder and published by . This book was released on 1972 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: