Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Smooth Ergodic Theory For Endomorphisms
Download Smooth Ergodic Theory For Endomorphisms full books in PDF, epub, and Kindle. Read online Smooth Ergodic Theory For Endomorphisms ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Smooth Ergodic Theory for Endomorphisms by : Min Qian
Download or read book Smooth Ergodic Theory for Endomorphisms written by Min Qian and published by Springer. This book was released on 2009-07-07 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ideal for researchers and graduate students, this volume sets out a general smooth ergodic theory for deterministic dynamical systems generated by non-invertible endomorphisms. Its focus is on the relations between entropy, Lyapunov exponents and dimensions.
Book Synopsis Smooth Ergodic Theory for Endomorphisms by : Min Qian
Download or read book Smooth Ergodic Theory for Endomorphisms written by Min Qian and published by . This book was released on 2009 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a general smooth ergodic theory for deterministic dynamical systems generated by non-invertible endomorphisms, mainly concerning the relations between entropy, Lyapunov exponents and dimensions. The authors make extensive use of the combination of the inverse limit space technique and the techniques developed to tackle random dynamical systems. The most interesting results in this book are (1) the equivalence between the SRB property and Pesin's entropy formula; (2) the generalized Ledrappier-Young entropy formula; (3) exact-dimensionality for weakly hyperbolic diffeomorphisms and for expanding maps. The proof of the exact-dimensionality for weakly hyperbolic diffeomorphisms seems more accessible than that of Barreira et al. It also inspires the authors to argue to what extent the famous Eckmann-Ruelle conjecture and many other classical results for diffeomorphisms and for flows hold true. After a careful reading of the book, one can systematically learn the Pesin theory for endomorphisms as well as the typical tricks played in the estimation of the number of balls of certain properties, which are extensively used in Chapters IX and X.
Book Synopsis An Introduction to Ergodic Theory by : Peter Walters
Download or read book An Introduction to Ergodic Theory written by Peter Walters and published by Springer Science & Business Media. This book was released on 2000-10-06 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first part of this introduction to ergodic theory addresses measure-preserving transformations of probability spaces and covers such topics as recurrence properties and the Birkhoff ergodic theorem. The second part focuses on the ergodic theory of continuous transformations of compact metrizable spaces. Several examples are detailed, and the final chapter outlines results and applications of ergodic theory to other branches of mathematics.
Book Synopsis Introduction to Smooth Ergodic Theory by : Luís Barreira
Download or read book Introduction to Smooth Ergodic Theory written by Luís Barreira and published by American Mathematical Society. This book was released on 2023-05-19 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first comprehensive introduction to smooth ergodic theory. It consists of two parts: the first introduces the core of the theory and the second discusses more advanced topics. In particular, the book describes the general theory of Lyapunov exponents and its applications to the stability theory of differential equations, the concept of nonuniform hyperbolicity, stable manifold theory (with emphasis on absolute continuity of invariant foliations), and the ergodic theory of dynamical systems with nonzero Lyapunov exponents. A detailed description of all the basic examples of conservative systems with nonzero Lyapunov exponents, including the geodesic flows on compact surfaces of nonpositive curvature, is also presented. There are more than 80 exercises. The book is aimed at graduate students specializing in dynamical systems and ergodic theory as well as anyone who wishes to get a working knowledge of smooth ergodic theory and to learn how to use its tools. It can also be used as a source for special topics courses on nonuniform hyperbolicity. The only prerequisite for using this book is a basic knowledge of real analysis, measure theory, differential equations, and topology, although the necessary background definitions and results are provided. In this second edition, the authors improved the exposition and added more exercises to make the book even more student-oriented. They also added new material to bring the book more in line with the current research in dynamical systems.
Book Synopsis Mathematics of Complexity and Dynamical Systems by : Robert A. Meyers
Download or read book Mathematics of Complexity and Dynamical Systems written by Robert A. Meyers and published by Springer Science & Business Media. This book was released on 2011-10-05 with total page 1885 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.
Book Synopsis Conformal Fractals by : Feliks Przytycki
Download or read book Conformal Fractals written by Feliks Przytycki and published by Cambridge University Press. This book was released on 2010-05-06 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: A one-stop introduction to the methods of ergodic theory applied to holomorphic iteration that is ideal for graduate courses.
Book Synopsis One-Dimensional Dynamics by : Welington de Melo
Download or read book One-Dimensional Dynamics written by Welington de Melo and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: One-dimensional dynamics has developed in the last decades into a subject in its own right. Yet, many recent results are inaccessible and have never been brought together. For this reason, we have tried to give a unified ac count of the subject and complete proofs of many results. To show what results one might expect, the first chapter deals with the theory of circle diffeomorphisms. The remainder of the book is an attempt to develop the analogous theory in the non-invertible case, despite the intrinsic additional difficulties. In this way, we have tried to show that there is a unified theory in one-dimensional dynamics. By reading one or more of the chapters, the reader can quickly reach the frontier of research. Let us quickly summarize the book. The first chapter deals with circle diffeomorphisms and contains a complete proof of the theorem on the smooth linearizability of circle diffeomorphisms due to M. Herman, J.-C. Yoccoz and others. Chapter II treats the kneading theory of Milnor and Thurstonj also included are an exposition on Hofbauer's tower construction and a result on fuB multimodal families (this last result solves a question posed by J. Milnor).
Book Synopsis Computational Approach to Riemann Surfaces by : Alexander I. Bobenko
Download or read book Computational Approach to Riemann Surfaces written by Alexander I. Bobenko and published by Springer Science & Business Media. This book was released on 2011-02-12 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume offers a well-structured overview of existent computational approaches to Riemann surfaces and those currently in development. The authors of the contributions represent the groups providing publically available numerical codes in this field. Thus this volume illustrates which software tools are available and how they can be used in practice. In addition examples for solutions to partial differential equations and in surface theory are presented. The intended audience of this book is twofold. It can be used as a textbook for a graduate course in numerics of Riemann surfaces, in which case the standard undergraduate background, i.e., calculus and linear algebra, is required. In particular, no knowledge of the theory of Riemann surfaces is expected; the necessary background in this theory is contained in the Introduction chapter. At the same time, this book is also intended for specialists in geometry and mathematical physics applying the theory of Riemann surfaces in their research. It is the first book on numerics of Riemann surfaces that reflects the progress made in this field during the last decade, and it contains original results. There are a growing number of applications that involve the evaluation of concrete characteristics of models analytically described in terms of Riemann surfaces. Many problem settings and computations in this volume are motivated by such concrete applications in geometry and mathematical physics.
Book Synopsis Random Perturbation of PDEs and Fluid Dynamic Models by : Franco Flandoli
Download or read book Random Perturbation of PDEs and Fluid Dynamic Models written by Franco Flandoli and published by Springer. This book was released on 2011-03-02 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book deals with the random perturbation of PDEs which lack well-posedness, mainly because of their non-uniqueness, in some cases because of blow-up. The aim is to show that noise may restore uniqueness or prevent blow-up. This is not a general or easy-to-apply rule, and the theory presented in the book is in fact a series of examples with a few unifying ideas. The role of additive and bilinear multiplicative noise is described and a variety of examples are included, from abstract parabolic evolution equations with non-Lipschitz nonlinearities to particular fluid dynamic models, like the dyadic model, linear transport equations and motion of point vortices.
Book Synopsis Eigenvalues, Embeddings and Generalised Trigonometric Functions by : Jan Lang
Download or read book Eigenvalues, Embeddings and Generalised Trigonometric Functions written by Jan Lang and published by Springer. This book was released on 2011-03-17 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main theme of the book is the study, from the standpoint of s-numbers, of integral operators of Hardy type and related Sobolev embeddings. In the theory of s-numbers the idea is to attach to every bounded linear map between Banach spaces a monotone decreasing sequence of non-negative numbers with a view to the classification of operators according to the way in which these numbers approach a limit: approximation numbers provide an especially important example of such numbers. The asymptotic behavior of the s-numbers of Hardy operators acting between Lebesgue spaces is determined here in a wide variety of cases. The proof methods involve the geometry of Banach spaces and generalized trigonometric functions; there are connections with the theory of the p-Laplacian.
Book Synopsis Some Mathematical Models from Population Genetics by : Alison Etheridge
Download or read book Some Mathematical Models from Population Genetics written by Alison Etheridge and published by Springer. This book was released on 2011-01-05 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work reflects sixteen hours of lectures delivered by the author at the 2009 St Flour summer school in probability. It provides a rapid introduction to a range of mathematical models that have their origins in theoretical population genetics. The models fall into two classes: forwards in time models for the evolution of frequencies of different genetic types in a population; and backwards in time (coalescent) models that trace out the genealogical relationships between individuals in a sample from the population. Some, like the classical Wright-Fisher model, date right back to the origins of the subject. Others, like the multiple merger coalescents or the spatial Lambda-Fleming-Viot process are much more recent. All share a rich mathematical structure. Biological terms are explained, the models are carefully motivated and tools for their study are presented systematically.
Book Synopsis Arithmetic Geometry by : Jean-Louis Colliot-Thélène
Download or read book Arithmetic Geometry written by Jean-Louis Colliot-Thélène and published by Springer. This book was released on 2010-10-27 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Arithmetic Geometry can be defined as the part of Algebraic Geometry connected with the study of algebraic varieties through arbitrary rings, in particular through non-algebraically closed fields. It lies at the intersection between classical algebraic geometry and number theory. A C.I.M.E. Summer School devoted to arithmetic geometry was held in Cetraro, Italy in September 2007, and presented some of the most interesting new developments in arithmetic geometry. This book collects the lecture notes which were written up by the speakers. The main topics concern diophantine equations, local-global principles, diophantine approximation and its relations to Nevanlinna theory, and rationally connected varieties. The book is divided into three parts, corresponding to the courses given by J-L Colliot-Thelene, Peter Swinnerton Dyer and Paul Vojta.
Book Synopsis Mathematical Models in the Manufacturing of Glass by : Angiolo Farina
Download or read book Mathematical Models in the Manufacturing of Glass written by Angiolo Farina and published by Springer. This book was released on 2010-11-27 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a review of advanced technological problems in the glass industry and of the mathematics involved. It is amazing that such a seemingly small research area is extremely rich and calls for an impressively large variety of mathematical methods, including numerical simulations of considerable complexity. The problems treated here are very typical of the field of glass manufacturing and cover a large spectrum of complementary subjects: injection molding by various techniques, radiative heat transfer in glass, nonisothermal flows and fibre spinning. The book can certainly be useful not only to applied mathematicians, but also to physicists and engineers, who can find in it an overview of the most advanced models and methods.
Author :Catherine Donati Martin Publisher :Springer Science & Business Media ISBN 13 :3642152163 Total Pages :511 pages Book Rating :4.6/5 (421 download)
Book Synopsis Séminaire de Probabilités XLIII by : Catherine Donati Martin
Download or read book Séminaire de Probabilités XLIII written by Catherine Donati Martin and published by Springer Science & Business Media. This book was released on 2010-10-28 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a new volume of the Séminaire de Probabilités which is now in its 43rd year. Following the tradition, this volume contains about 20 original research and survey articles on topics related to stochastic analysis. It contains an advanced course of J. Picard on the representation formulae for fractional Brownian motion. The regular chapters cover a wide range of themes, such as stochastic calculus and stochastic differential equations, stochastic differential geometry, filtrations, analysis on Wiener space, random matrices and free probability, as well as mathematical finance. Some of the contributions were presented at the Journées de Probabilités held in Poitiers in June 2009.
Book Synopsis Symmetries of Compact Riemann Surfaces by : Emilio Bujalance
Download or read book Symmetries of Compact Riemann Surfaces written by Emilio Bujalance and published by Springer. This book was released on 2010-09-29 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph covers symmetries of compact Riemann surfaces. It examines the number of conjugacy classes of symmetries, the numbers of ovals of symmetries and the symmetry types of Riemann surfaces.
Book Synopsis The Analysis of Fractional Differential Equations by : Kai Diethelm
Download or read book The Analysis of Fractional Differential Equations written by Kai Diethelm and published by Springer Science & Business Media. This book was released on 2010-09-03 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.
Book Synopsis Morrey and Campanato Meet Besov, Lizorkin and Triebel by : Wen Yuan
Download or read book Morrey and Campanato Meet Besov, Lizorkin and Triebel written by Wen Yuan and published by Springer Science & Business Media. This book was released on 2010-09-18 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last 60 years the theory of function spaces has been a subject of growing interest and increasing diversity. Based on three formally different developments, namely, the theory of Besov and Triebel-Lizorkin spaces, the theory of Morrey and Campanato spaces and the theory of Q spaces, the authors develop a unified framework for all of these spaces. As a byproduct, the authors provide a completion of the theory of Triebel-Lizorkin spaces when p = ∞.