Single Neuron Computation

Download Single Neuron Computation PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 1483296067
Total Pages : 644 pages
Book Rating : 4.4/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Single Neuron Computation by : Thomas M. McKenna

Download or read book Single Neuron Computation written by Thomas M. McKenna and published by Academic Press. This book was released on 2014-05-19 with total page 644 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains twenty-two original contributions that provide a comprehensive overview of computational approaches to understanding a single neuron structure. The focus on cellular-level processes is twofold. From a computational neuroscience perspective, a thorough understanding of the information processing performed by single neurons leads to an understanding of circuit- and systems-level activity. From the standpoint of artificial neural networks (ANNs), a single real neuron is as complex an operational unit as an entire ANN, and formalizing the complex computations performed by real neurons is essential to the design of enhanced processor elements for use in the next generation of ANNs. The book covers computation in dendrites and spines, computational aspects of ion channels, synapses, patterned discharge and multistate neurons, and stochastic models of neuron dynamics. It is the most up-to-date presentation of biophysical and computational methods.

Biophysics of Computation

Download Biophysics of Computation PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0195181999
Total Pages : 587 pages
Book Rating : 4.1/5 (951 download)

DOWNLOAD NOW!


Book Synopsis Biophysics of Computation by : Christof Koch

Download or read book Biophysics of Computation written by Christof Koch and published by Oxford University Press. This book was released on 2004-10-28 with total page 587 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes.Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium and potassium currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation.Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience, electrical and computer engineering, and physics.

Neuronal Dynamics

Download Neuronal Dynamics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107060834
Total Pages : 591 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Neuronal Dynamics by : Wulfram Gerstner

Download or read book Neuronal Dynamics written by Wulfram Gerstner and published by Cambridge University Press. This book was released on 2014-07-24 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.

Spiking Neuron Models

Download Spiking Neuron Models PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521890793
Total Pages : 498 pages
Book Rating : 4.8/5 (97 download)

DOWNLOAD NOW!


Book Synopsis Spiking Neuron Models by : Wulfram Gerstner

Download or read book Spiking Neuron Models written by Wulfram Gerstner and published by Cambridge University Press. This book was released on 2002-08-15 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introduction to spiking neurons for advanced undergraduate or graduate students. It can be used with courses in computational neuroscience, theoretical biology, neural modeling, biophysics, or neural networks. It focuses on phenomenological approaches rather than detailed models in order to provide the reader with a conceptual framework. No prior knowledge beyond undergraduate mathematics is necessary to follow the book. Thus it should appeal to students or researchers in physics, mathematics, or computer science interested in biology; moreover it will also be useful for biologists working in mathematical modeling.

Biophysics of Computation

Download Biophysics of Computation PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0190292857
Total Pages : 588 pages
Book Rating : 4.1/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Biophysics of Computation by : Christof Koch

Download or read book Biophysics of Computation written by Christof Koch and published by Oxford University Press. This book was released on 2004-10-28 with total page 588 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes. Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium and potassium currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation. Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience, electrical and computer engineering, and physics.

Efficient Processing of Deep Neural Networks

Download Efficient Processing of Deep Neural Networks PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031017668
Total Pages : 254 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Efficient Processing of Deep Neural Networks by : Vivienne Sze

Download or read book Efficient Processing of Deep Neural Networks written by Vivienne Sze and published by Springer Nature. This book was released on 2022-05-31 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a structured treatment of the key principles and techniques for enabling efficient processing of deep neural networks (DNNs). DNNs are currently widely used for many artificial intelligence (AI) applications, including computer vision, speech recognition, and robotics. While DNNs deliver state-of-the-art accuracy on many AI tasks, it comes at the cost of high computational complexity. Therefore, techniques that enable efficient processing of deep neural networks to improve key metrics—such as energy-efficiency, throughput, and latency—without sacrificing accuracy or increasing hardware costs are critical to enabling the wide deployment of DNNs in AI systems. The book includes background on DNN processing; a description and taxonomy of hardware architectural approaches for designing DNN accelerators; key metrics for evaluating and comparing different designs; features of DNN processing that are amenable to hardware/algorithm co-design to improve energy efficiency and throughput; and opportunities for applying new technologies. Readers will find a structured introduction to the field as well as formalization and organization of key concepts from contemporary work that provide insights that may spark new ideas.

The Theoretical Foundation of Dendritic Function

Download The Theoretical Foundation of Dendritic Function PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262193566
Total Pages : 484 pages
Book Rating : 4.1/5 (935 download)

DOWNLOAD NOW!


Book Synopsis The Theoretical Foundation of Dendritic Function by : Wilfrid Rall

Download or read book The Theoretical Foundation of Dendritic Function written by Wilfrid Rall and published by MIT Press. This book was released on 1995 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of fifteen previously published papers, some of them not widely available, have been carefully chosen and annotated by Rall's colleagues and other leading neuroscientists.

Computation and Neural Systems

Download Computation and Neural Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 146153254X
Total Pages : 490 pages
Book Rating : 4.4/5 (615 download)

DOWNLOAD NOW!


Book Synopsis Computation and Neural Systems by : Frank H. Eeckman

Download or read book Computation and Neural Systems written by Frank H. Eeckman and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational neuroscience is best defined by its focus on understanding the nervous systems as a computational device rather than by a particular experimental technique. Accordinlgy, while the majority of the papers in this book describe analysis and modeling efforts, other papers describe the results of new biological experiments explicitly placed in the context of computational issues. The distribution of subjects in Computation and Neural Systems reflects the current state of the field. In addition to the scientific results presented here, numerous papers also describe the ongoing technical developments that are critical for the continued growth of computational neuroscience. Computation and Neural Systems includes papers presented at the First Annual Computation and Neural Systems meeting held in San Francisco, CA, July 26--29, 1992.

Multivariate Statistical Machine Learning Methods for Genomic Prediction

Download Multivariate Statistical Machine Learning Methods for Genomic Prediction PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030890104
Total Pages : 707 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Multivariate Statistical Machine Learning Methods for Genomic Prediction by : Osval Antonio Montesinos López

Download or read book Multivariate Statistical Machine Learning Methods for Genomic Prediction written by Osval Antonio Montesinos López and published by Springer Nature. This book was released on 2022-02-14 with total page 707 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY 4.0 license This open access book brings together the latest genome base prediction models currently being used by statisticians, breeders and data scientists. It provides an accessible way to understand the theory behind each statistical learning tool, the required pre-processing, the basics of model building, how to train statistical learning methods, the basic R scripts needed to implement each statistical learning tool, and the output of each tool. To do so, for each tool the book provides background theory, some elements of the R statistical software for its implementation, the conceptual underpinnings, and at least two illustrative examples with data from real-world genomic selection experiments. Lastly, worked-out examples help readers check their own comprehension.The book will greatly appeal to readers in plant (and animal) breeding, geneticists and statisticians, as it provides in a very accessible way the necessary theory, the appropriate R code, and illustrative examples for a complete understanding of each statistical learning tool. In addition, it weighs the advantages and disadvantages of each tool.

Space-Time Computing with Temporal Neural Networks

Download Space-Time Computing with Temporal Neural Networks PDF Online Free

Author :
Publisher : Morgan & Claypool Publishers
ISBN 13 : 1627058907
Total Pages : 245 pages
Book Rating : 4.6/5 (27 download)

DOWNLOAD NOW!


Book Synopsis Space-Time Computing with Temporal Neural Networks by : James E. Smith

Download or read book Space-Time Computing with Temporal Neural Networks written by James E. Smith and published by Morgan & Claypool Publishers. This book was released on 2017-05-18 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding and implementing the brain's computational paradigm is the one true grand challenge facing computer researchers. Not only are the brain's computational capabilities far beyond those of conventional computers, its energy efficiency is truly remarkable. This book, written from the perspective of a computer designer and targeted at computer researchers, is intended to give both background and lay out a course of action for studying the brain's computational paradigm. It contains a mix of concepts and ideas drawn from computational neuroscience, combined with those of the author. As background, relevant biological features are described in terms of their computational and communication properties. The brain's neocortex is constructed of massively interconnected neurons that compute and communicate via voltage spikes, and a strong argument can be made that precise spike timing is an essential element of the paradigm. Drawing from the biological features, a mathematics-based computational paradigm is constructed. The key feature is spiking neurons that perform communication and processing in space-time, with emphasis on time. In these paradigms, time is used as a freely available resource for both communication and computation. Neuron models are first discussed in general, and one is chosen for detailed development. Using the model, single-neuron computation is first explored. Neuron inputs are encoded as spike patterns, and the neuron is trained to identify input pattern similarities. Individual neurons are building blocks for constructing larger ensembles, referred to as "columns". These columns are trained in an unsupervised manner and operate collectively to perform the basic cognitive function of pattern clustering. Similar input patterns are mapped to a much smaller set of similar output patterns, thereby dividing the input patterns into identifiable clusters. Larger cognitive systems are formed by combining columns into a hierarchical architecture. These higher level architectures are the subject of ongoing study, and progress to date is described in detail in later chapters. Simulation plays a major role in model development, and the simulation infrastructure developed by the author is described.

An Introductory Course in Computational Neuroscience

Download An Introductory Course in Computational Neuroscience PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262038250
Total Pages : 405 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis An Introductory Course in Computational Neuroscience by : Paul Miller

Download or read book An Introductory Course in Computational Neuroscience written by Paul Miller and published by MIT Press. This book was released on 2018-10-02 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook for students with limited background in mathematics and computer coding, emphasizing computer tutorials that guide readers in producing models of neural behavior. This introductory text teaches students to understand, simulate, and analyze the complex behaviors of individual neurons and brain circuits. It is built around computer tutorials that guide students in producing models of neural behavior, with the associated Matlab code freely available online. From these models students learn how individual neurons function and how, when connected, neurons cooperate in a circuit. The book demonstrates through simulated models how oscillations, multistability, post-stimulus rebounds, and chaos can arise within either single neurons or circuits, and it explores their roles in the brain. The book first presents essential background in neuroscience, physics, mathematics, and Matlab, with explanations illustrated by many example problems. Subsequent chapters cover the neuron and spike production; single spike trains and the underlying cognitive processes; conductance-based models; the simulation of synaptic connections; firing-rate models of large-scale circuit operation; dynamical systems and their components; synaptic plasticity; and techniques for analysis of neuron population datasets, including principal components analysis, hidden Markov modeling, and Bayesian decoding. Accessible to undergraduates in life sciences with limited background in mathematics and computer coding, the book can be used in a “flipped” or “inverted” teaching approach, with class time devoted to hands-on work on the computer tutorials. It can also be a resource for graduate students in the life sciences who wish to gain computing skills and a deeper knowledge of neural function and neural circuits.

Neural Computation in Hopfield Networks and Boltzmann Machines

Download Neural Computation in Hopfield Networks and Boltzmann Machines PDF Online Free

Author :
Publisher : University of Delaware Press
ISBN 13 : 9780874134643
Total Pages : 310 pages
Book Rating : 4.1/5 (346 download)

DOWNLOAD NOW!


Book Synopsis Neural Computation in Hopfield Networks and Boltzmann Machines by : James P. Coughlin

Download or read book Neural Computation in Hopfield Networks and Boltzmann Machines written by James P. Coughlin and published by University of Delaware Press. This book was released on 1995 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: "One hundred years ago, the fundamental building block of the central nervous system, the neuron, was discovered. This study focuses on the existing mathematical models of neurons and their interactions, the simulation of which has been one of the biggest challenges facing modern science." "More than fifty years ago, W. S. McCulloch and W. Pitts devised their model for the neuron, John von Neumann seemed to sense the possibilities for the development of intelligent systems, and Frank Rosenblatt came up with a functioning network of neurons. Despite these advances, the subject had begun to fade as a major research area until John Hopfield arrived on the scene. Drawing an analogy between neural networks and the Ising spin models of ferromagnetism, Hopfield was able to introduce a "computational energy" that would decline toward stable minima under the operation of the system of neurodynamics devised by Roy Glauber." "Like a switch, a neuron is said to be either "on" or "off." The state of the neuron is determined by the states of the other neurons and the connections between them, and the connections are assumed to be reciprocal - that is, neuron number one influences neuron number two exactly as strongly as neuron number two influences neuron number one. According to the Glauber dynamics, the states of the neurons are updated in a random serial way until an equilibrium is reached. An energy function can be associated with each state, and equilibrium corresponds to a minimum of this energy. It follows from Hopfield's assumption of reciprocity that an equilibrium will always be reached." "D. H. Ackley, G. E. Hinton, and T. J. Sejnowski modified the Hopfield network by introducing the simulated annealing algorithm to search out the deepest minima. This is accomplished by - loosely speaking - shaking the machine. The violence of the shaking is controlled by a parameter called temperature, producing the Boltzmann machine - a name designed to emphasize the connection to the statistical physics of Ising spin models." "The Boltzmann machine reduces to the Hopfield model in the special case where the temperature goes to zero. The resulting network, under the Glauber dynamics, produces a homogeneous, irreducible, aperiodic Markov chain as it wanders through state space. The entire theory of Markov chains becomes applicable to the Boltzmann machine." "With ten chapters, five appendices, a list of references, and an index, this study should serve as an introduction to the field of neural networks and its application, and is suitable for an introductory graduate course or an advanced undergraduate course."--BOOK JACKET.Title Summary field provided by Blackwell North America, Inc. All Rights Reserved

Neural Networks for Perception

Download Neural Networks for Perception PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 1483262790
Total Pages : 384 pages
Book Rating : 4.4/5 (832 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks for Perception by : Harry Wechsler

Download or read book Neural Networks for Perception written by Harry Wechsler and published by Academic Press. This book was released on 2014-05-10 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Networks for Perception, Volume 2: Computation, Learning, and Architectures explores the computational and adaptation problems related to the use of neuronal systems, and the corresponding hardware architectures capable of implementing neural networks for perception and of coping with the complexity inherent in massively distributed computation. This book addresses both theoretical and practical issues related to the feasibility of both explaining human perception and implementing machine perception in terms of neural network models. The text is organized into two sections. The first section, computation and learning, discusses topics on learning visual behaviors, some of the elementary theory of the basic backpropagation neural network architecture, and computation and learning in the context of neural network capacity. The second section is on hardware architecture. The chapters included in this part of the book describe the architectures and possible applications of recent neurocomputing models. The Cohen-Grossberg model of associative memory, hybrid optical/digital architectures for neorocomputing, and electronic circuits for adaptive synapses are some of the subjects elucidated. Neuroscientists, computer scientists, engineers, and researchers in artificial intelligence will find the book useful.

From Neuron to Cognition via Computational Neuroscience

Download From Neuron to Cognition via Computational Neuroscience PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262335271
Total Pages : 808 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis From Neuron to Cognition via Computational Neuroscience by : Michael A. Arbib

Download or read book From Neuron to Cognition via Computational Neuroscience written by Michael A. Arbib and published by MIT Press. This book was released on 2016-11-04 with total page 808 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, integrated, and accessible textbook presenting core neuroscientific topics from a computational perspective, tracing a path from cells and circuits to behavior and cognition. This textbook presents a wide range of subjects in neuroscience from a computational perspective. It offers a comprehensive, integrated introduction to core topics, using computational tools to trace a path from neurons and circuits to behavior and cognition. Moreover, the chapters show how computational neuroscience—methods for modeling the causal interactions underlying neural systems—complements empirical research in advancing the understanding of brain and behavior. The chapters—all by leaders in the field, and carefully integrated by the editors—cover such subjects as action and motor control; neuroplasticity, neuromodulation, and reinforcement learning; vision; and language—the core of human cognition. The book can be used for advanced undergraduate or graduate level courses. It presents all necessary background in neuroscience beyond basic facts about neurons and synapses and general ideas about the structure and function of the human brain. Students should be familiar with differential equations and probability theory, and be able to pick up the basics of programming in MATLAB and/or Python. Slides, exercises, and other ancillary materials are freely available online, and many of the models described in the chapters are documented in the brain operation database, BODB (which is also described in a book chapter). Contributors Michael A. Arbib, Joseph Ayers, James Bednar, Andrej Bicanski, James J. Bonaiuto, Nicolas Brunel, Jean-Marie Cabelguen, Carmen Canavier, Angelo Cangelosi, Richard P. Cooper, Carlos R. Cortes, Nathaniel Daw, Paul Dean, Peter Ford Dominey, Pierre Enel, Jean-Marc Fellous, Stefano Fusi, Wulfram Gerstner, Frank Grasso, Jacqueline A. Griego, Ziad M. Hafed, Michael E. Hasselmo, Auke Ijspeert, Stephanie Jones, Daniel Kersten, Jeremie Knuesel, Owen Lewis, William W. Lytton, Tomaso Poggio, John Porrill, Tony J. Prescott, John Rinzel, Edmund Rolls, Jonathan Rubin, Nicolas Schweighofer, Mohamed A. Sherif, Malle A. Tagamets, Paul F. M. J. Verschure, Nathan Vierling-Claasen, Xiao-Jing Wang, Christopher Williams, Ransom Winder, Alan L. Yuille

Computer Information Systems and Industrial Management

Download Computer Information Systems and Industrial Management PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783319453774
Total Pages : 754 pages
Book Rating : 4.4/5 (537 download)

DOWNLOAD NOW!


Book Synopsis Computer Information Systems and Industrial Management by : Khalid Saeed

Download or read book Computer Information Systems and Industrial Management written by Khalid Saeed and published by Springer. This book was released on 2016-09-09 with total page 754 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 15th IFIP TC8 International Conference on Computer Information Systems and Industrial Management, CISIM 2016, held in Vilnius, Lithuania, in September 2016. The 63 regular papers presented together with 1 inivted paper and 5 keynotes in this volume were carefully reviewed and selected from about 89 submissions. The main topics covered are rough set methods for big data analytics; images, visualization, classification; optimization, tuning; scheduling in manufacturing and other applications; algorithms; decisions; intelligent distributed systems; and biometrics, identification, security.

Neural Networks with R

Download Neural Networks with R PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1788399412
Total Pages : 270 pages
Book Rating : 4.7/5 (883 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks with R by : Giuseppe Ciaburro

Download or read book Neural Networks with R written by Giuseppe Ciaburro and published by Packt Publishing Ltd. This book was released on 2017-09-27 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Uncover the power of artificial neural networks by implementing them through R code. About This Book Develop a strong background in neural networks with R, to implement them in your applications Build smart systems using the power of deep learning Real-world case studies to illustrate the power of neural network models Who This Book Is For This book is intended for anyone who has a statistical background with knowledge in R and wants to work with neural networks to get better results from complex data. If you are interested in artificial intelligence and deep learning and you want to level up, then this book is what you need! What You Will Learn Set up R packages for neural networks and deep learning Understand the core concepts of artificial neural networks Understand neurons, perceptrons, bias, weights, and activation functions Implement supervised and unsupervised machine learning in R for neural networks Predict and classify data automatically using neural networks Evaluate and fine-tune the models you build. In Detail Neural networks are one of the most fascinating machine learning models for solving complex computational problems efficiently. Neural networks are used to solve wide range of problems in different areas of AI and machine learning. This book explains the niche aspects of neural networking and provides you with foundation to get started with advanced topics. The book begins with neural network design using the neural net package, then you'll build a solid foundation knowledge of how a neural network learns from data, and the principles behind it. This book covers various types of neural network including recurrent neural networks and convoluted neural networks. You will not only learn how to train neural networks, but will also explore generalization of these networks. Later we will delve into combining different neural network models and work with the real-world use cases. By the end of this book, you will learn to implement neural network models in your applications with the help of practical examples in the book. Style and approach A step-by-step guide filled with real-world practical examples.

Complex-Valued Neural Networks with Multi-Valued Neurons

Download Complex-Valued Neural Networks with Multi-Valued Neurons PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642203531
Total Pages : 262 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Complex-Valued Neural Networks with Multi-Valued Neurons by : Igor Aizenberg

Download or read book Complex-Valued Neural Networks with Multi-Valued Neurons written by Igor Aizenberg and published by Springer. This book was released on 2011-06-24 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Complex-Valued Neural Networks have higher functionality, learn faster and generalize better than their real-valued counterparts. This book is devoted to the Multi-Valued Neuron (MVN) and MVN-based neural networks. It contains a comprehensive observation of MVN theory, its learning, and applications. MVN is a complex-valued neuron whose inputs and output are located on the unit circle. Its activation function is a function only of argument (phase) of the weighted sum. MVN derivative-free learning is based on the error-correction rule. A single MVN can learn those input/output mappings that are non-linearly separable in the real domain. Such classical non-linearly separable problems as XOR and Parity n are the simplest that can be learned by a single MVN. Another important advantage of MVN is a proper treatment of the phase information. These properties of MVN become even more remarkable when this neuron is used as a basic one in neural networks. The Multilayer Neural Network based on Multi-Valued Neurons (MLMVN) is an MVN-based feedforward neural network. Its backpropagation learning algorithm is derivative-free and based on the error-correction rule. It does not suffer from the local minima phenomenon. MLMVN outperforms many other machine learning techniques in terms of learning speed, network complexity and generalization capability when solving both benchmark and real-world classification and prediction problems. Another interesting application of MVN is its use as a basic neuron in multi-state associative memories. The book is addressed to those readers who develop theoretical fundamentals of neural networks and use neural networks for solving various real-world problems. It should also be very suitable for Ph.D. and graduate students pursuing their degrees in computational intelligence.