Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Rotating Thermal Flows In Natural And Industrial Processes
Download Rotating Thermal Flows In Natural And Industrial Processes full books in PDF, epub, and Kindle. Read online Rotating Thermal Flows In Natural And Industrial Processes ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Rotating Thermal Flows in Natural and Industrial Processes by : Marcello Lappa
Download or read book Rotating Thermal Flows in Natural and Industrial Processes written by Marcello Lappa and published by John Wiley & Sons. This book was released on 2012-07-25 with total page 666 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rotating Thermal Flows in Natural and Industrial Processes provides the reader with a systematic description of the different types of thermal convection and flow instabilities in rotating systems, as present in materials, crystal growth, thermal engineering, meteorology, oceanography, geophysics and astrophysics. It expressly shows how the isomorphism between small and large scale phenomena becomes beneficial to the definition and ensuing development of an integrated comprehensive framework. This allows the reader to understand and assimilate the underlying, quintessential mechanisms without requiring familiarity with specific literature on the subject. Topics treated in the first part of the book include: Thermogravitational convection in rotating fluids (from laminar to turbulent states); Stably stratified and unstratified shear flows; Barotropic and baroclinic instabilities; Rossby waves and Centrifugally-driven convection; Potential Vorticity, Quasi-Geostrophic Theory and related theorems; The dynamics of interacting vortices, interacting waves and mixed (hybrid) vortex-wave states; Geostrophic Turbulence and planetary patterns. The second part is entirely devoted to phenomena of practical interest, i.e. subjects relevant to the realms of industry and technology, among them: Surface-tension-driven convection in rotating fluids; Differential-rotation-driven (forced) flows; Crystal Growth from the melt of oxide or semiconductor materials; Directional solidification; Rotating Machinery; Flow control by Rotating magnetic fields; Angular Vibrations and Rocking motions; Covering a truly prodigious range of scales, from atmospheric and oceanic processes and fluid motion in "other solar-system bodies", to convection in its myriad manifestations in a variety of applications of technological relevance, this unifying text is an ideal reference for physicists and engineers, as well as an important resource for advanced students taking courses on the physics of fluids, fluid mechanics, thermal, mechanical and materials engineering, environmental phenomena, meteorology and geophysics.
Book Synopsis Modeling Atmospheric and Oceanic Flows by : Thomas von Larcher
Download or read book Modeling Atmospheric and Oceanic Flows written by Thomas von Larcher and published by John Wiley & Sons. This book was released on 2014-11-24 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modeling Atmospheric and Oceanic Flows: Insights from Laboratory Experiments and Numerical Simulations provides a broad overview of recent progress in using laboratory experiments and numerical simulations to model atmospheric and oceanic fluid motions. This volume not only surveys novel research topics in laboratory experimentation, but also highlights recent developments in the corresponding computational simulations. As computing power grows exponentially and better numerical codes are developed, the interplay between numerical simulations and laboratory experiments is gaining paramount importance within the scientific community. The lessons learnt from the laboratory–model comparisons in this volume will act as a source of inspiration for the next generation of experiments and simulations. Volume highlights include: Topics pertaining to atmospheric science, climate physics, physical oceanography, marine geology and geophysics Overview of the most advanced experimental and computational research in geophysics Recent developments in numerical simulations of atmospheric and oceanic fluid motion Unique comparative analysis of the experimental and numerical approaches to modeling fluid flow Modeling Atmospheric and Oceanic Flows will be a valuable resource for graduate students, researchers, and professionals in the fields of geophysics, atmospheric sciences, oceanography, climate science, hydrology, and experimental geosciences.
Book Synopsis Physics Of Buoyant Flows: From Instabilities To Turbulence by : Mahendra Kumar Verma
Download or read book Physics Of Buoyant Flows: From Instabilities To Turbulence written by Mahendra Kumar Verma and published by World Scientific. This book was released on 2018-05-30 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gravity pervades the whole universe; hence buoyancy drives fluids everywhere including those in the atmospheres and interiors of planets and stars. Prime examples of such flows are mantle convection, atmospheric flows, solar convection, dynamo process, heat exchangers, airships and hot air balloons. In this book we present fundamentals and applications of thermal convection and stratified flows.Buoyancy brings in extremely rich phenomena including waves and instabilities, patterns, chaos, and turbulence. In this book we present these topics in a systematic manner. First we present a unified treatment of linear theory that yields waves and thermal instability for stably and unstably-stratified flows respectively. We extend this analysis to include rotation and magnetic field. We also describe nonlinear saturation and pattern formation in Rayleigh-Bénard convection.The second half of the book is dedicated to buoyancy-driven turbulence, both in stably-stratified flow and in thermal convection. We describe the spectral theory including energy flux and show that the thermally-driven turbulence is similar to hydrodynamic turbulence. We also describe large-scale quantities like Reynolds and Nusselt numbers, flow anisotropy, and the dynamics of flow structures, namely flow reversals. Thus, this book presents all the major aspects of the buoyancy-driven flows in a coherent manner that would appeal to advanced graduate students and researchers.
Book Synopsis Multi-scale fluid physics in oceanic flows: New insights from laboratory experiments and numerical simulations by : Shi-Di Huang
Download or read book Multi-scale fluid physics in oceanic flows: New insights from laboratory experiments and numerical simulations written by Shi-Di Huang and published by Frontiers Media SA. This book was released on 2024-01-15 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Higher Order Dynamic Mode Decomposition and Its Applications by : Jose Manuel Vega
Download or read book Higher Order Dynamic Mode Decomposition and Its Applications written by Jose Manuel Vega and published by Academic Press. This book was released on 2020-09-22 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Higher Order Dynamic Mode Decomposition and Its Applications provides detailed background theory, as well as several fully explained applications from a range of industrial contexts to help readers understand and use this innovative algorithm. Data-driven modelling of complex systems is a rapidly evolving field, which has applications in domains including engineering, medical, biological, and physical sciences, where it is providing ground-breaking insights into complex systems that exhibit rich multi-scale phenomena in both time and space. Starting with an introductory summary of established order reduction techniques like POD, DEIM, Koopman, and DMD, this book proceeds to provide a detailed explanation of higher order DMD, and to explain its advantages over other methods. Technical details of how the HODMD can be applied to a range of industrial problems will help the reader decide how to use the method in the most appropriate way, along with example MATLAB codes and advice on how to analyse and present results. - Includes instructions for the implementation of the HODMD, MATLAB codes, and extended discussions of the algorithm - Includes descriptions of other order reduction techniques, and compares their strengths and weaknesses - Provides examples of applications involving complex flow fields, in contexts including aerospace engineering, geophysical flows, and wind turbine design
Book Synopsis Handbook of Thermal Science and Engineering by :
Download or read book Handbook of Thermal Science and Engineering written by and published by Springer. This book was released on 2018-07-31 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Handbook provides researchers, faculty, design engineers in industrial R&D, and practicing engineers in the field concise treatments of advanced and more-recently established topics in thermal science and engineering, with an important emphasis on micro- and nanosystems, not covered in earlier references on applied thermal science, heat transfer or relevant aspects of mechanical/chemical engineering. Major sections address new developments in heat transfer, transport phenomena, single- and multiphase flows with energy transfer, thermal-bioengineering, thermal radiation, combined mode heat transfer, coupled heat and mass transfer, and energy systems. Energy transport at the macro-scale and micro/nano-scales is also included. The internationally recognized team of authors adopt a consistent and systematic approach and writing style, including ample cross reference among topics, offering readers a user-friendly knowledgebase greater than the sum of its parts, perfect for frequent consultation. The Handbook of Thermal Science and Engineering is ideal for academic and professional readers in the traditional and emerging areas of mechanical engineering, chemical engineering, aerospace engineering, bioengineering, electronics fabrication, energy, and manufacturing concerned with the influence thermal phenomena.
Book Synopsis Rotating Thermal Flows in Natural and Industrial Processes by : Marcello Lappa
Download or read book Rotating Thermal Flows in Natural and Industrial Processes written by Marcello Lappa and published by . This book was released on 2012 with total page 542 pages. Available in PDF, EPUB and Kindle. Book excerpt: "In this context, it is expressly shown how the aforementioned isomorphism between small and large scale phenomena becomes beneficial to the definition and ensuing development of an integrated comprehensive framework allowing the reader to understand and assimilate the underlying quintessential mechanisms without requiring, however, familiarity with specific literature on the subject"--Provided by publisher.
Book Synopsis Advances in Computational Heat and Mass Transfer by : Ali Cemal Benim
Download or read book Advances in Computational Heat and Mass Transfer written by Ali Cemal Benim and published by Springer Nature. This book was released on with total page 742 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Fluid Flow and Heat Transfer in Rotating Porous Media by : Peter Vadasz
Download or read book Fluid Flow and Heat Transfer in Rotating Porous Media written by Peter Vadasz and published by Springer. This book was released on 2015-07-28 with total page 85 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Book concentrates the available knowledge on rotating fluid flow and heat transfer in porous media in one single reference. Dr. Vadasz develops the fundamental theory of rotating flow and heat transfer in porous media and introduces systematic classification and identification of the relevant problems. An initial distinction between rotating flows in isothermal heterogeneous porous systems and natural convection in homogeneous non-‐isothermal porous systems provides the two major classes of problems to be considered. A few examples of solutions to selected problems are presented, highlighting the significant impact of rotation on the flow in porous media.
Book Synopsis Modern world heat transfer problems: Role of nanofluids and fractional order approaches by : Adnan
Download or read book Modern world heat transfer problems: Role of nanofluids and fractional order approaches written by Adnan and published by Frontiers Media SA. This book was released on 2023-01-31 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Thermal Processing of Food Products by Steam and Hot Water by : Seid Mahdi Jafari
Download or read book Thermal Processing of Food Products by Steam and Hot Water written by Seid Mahdi Jafari and published by Woodhead Publishing. This book was released on 2022-11-10 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Thermal Processing of Food Products by Steam and Hot Water, a volume in the Unit Operations and Processing Equipment in the Food Industry series, explains the processing operations and equipment necessary for the thermal processing of different food products by applying steam and hot water. Sections cover an overview of thermal food processing, heat exchangers in the food processing industry, different thermal processing operations in the food industry, and applications of heat exchanges. All sections emphasize basic texts relating to experimental, theoretical, computational and/or the applications of food engineering principles and relevant processing equipment. Written by experts in the field of food engineering, in a simple and dynamic way, this book targets industrial engineers working in the field of food processing and within food factories to make them more familiar with the particular food processing operations and equipment. - Thoroughly explores novel applications of thermal unit operations in the food industry - Evaluates different alternatives for thermal processing operations - Covers the application of heat exchangers in the food industry
Download or read book Rotating Flow written by Peter Childs and published by Elsevier. This book was released on 2010-10-29 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows.Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries.Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows—which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circulations included to help deepen understanding.Whilst competing resources are weighed down with complex mathematics, this book focuses on the essential equations and provides full workings to take readers step-by-step through the theory so they can concentrate on the practical applications. - A detailed yet accessible introduction to rotating flows, illustrating the differences between flows where rotation is significant and highlighting the non-intuitive nature of rotating flow fields - Written by world-leading authority on rotating flow, Peter Childs, making this a unique and authoritative work - Covers the essential theory behind engineering applications such as rotating discs, cylinders, and cavities, with natural phenomena such as atmospheric and oceanic flows used to explain underlying principles - Provides a rigorous, fully worked mathematical account of rotating flows whilst also including numerous practical examples in daily life to highlight the relevance and prevalence of different flow types - Concise summaries of the results of important research and lists of references included to direct readers to significant further resources
Book Synopsis Engineering Fluid Flows and Heat Transfer Analysis II by : Houssem Laidoudi
Download or read book Engineering Fluid Flows and Heat Transfer Analysis II written by Houssem Laidoudi and published by Trans Tech Publications Ltd. This book was released on 2021-05-18 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special topic volume with invited peer reviewed papers only
Book Synopsis Applications of Semi-Analytical Methods for Nanofluid Flow and Heat Transfer by : Mohsen Sheikholeslami
Download or read book Applications of Semi-Analytical Methods for Nanofluid Flow and Heat Transfer written by Mohsen Sheikholeslami and published by Elsevier. This book was released on 2018-01-02 with total page 882 pages. Available in PDF, EPUB and Kindle. Book excerpt: Application of Semi-Analytical Methods for Nanofluid Flow and Heat Transfer applies semi-analytical methods to solve a range of engineering problems. After various methods are introduced, their application in nanofluid flow and heat transfer, magnetohydrodynamic flow, electrohydrodynamic flow and heat transfer, and nanofluid flow in porous media within several examples are explored. This is a valuable reference resource for materials scientists and engineers that will help familiarize them with a wide range of semi-analytical methods and how they are used in nanofluid flow and heat transfer. The book also includes case studies to illustrate how these methods are used in practice. - Presents detailed information, giving readers a complete familiarity with governing equations where nanofluid is used as working fluid - Provides the fundamentals of new analytical methods, applying them to applications of nanofluid flow and heat transfer in the presence of magnetic and electric field - Gives a detailed overview of nanofluid motion in porous media
Book Synopsis Convective Flow and Heat Transfer from Wavy Surfaces by : Aroon Shenoy
Download or read book Convective Flow and Heat Transfer from Wavy Surfaces written by Aroon Shenoy and published by CRC Press. This book was released on 2016-10-14 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Convective Flow and Heat Transfer from Wavy Surfaces: Viscous Fluids, Porous Media, and Nanofluids addresses the wavy irregular surfaces in heat transfer devices. Fluid flow and heat transfer studies from wavy surfaces have received attention, since they add complexity and require special mathematical techniques. This book considers the flow and heat transfer characteristics from wavy surfaces, providing an understanding of convective behavioral changes.
Book Synopsis Micro and Nanofluid Convection with Magnetic Field Effects for Heat and Mass Transfer Applications using MATLAB® by : Chakravarthula S K Raju
Download or read book Micro and Nanofluid Convection with Magnetic Field Effects for Heat and Mass Transfer Applications using MATLAB® written by Chakravarthula S K Raju and published by Elsevier. This book was released on 2022-06-02 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: Micro and Nanofluid Convection with Magnetic Field Effects for Heat and Mass Transfer Applications using MATLAB® examines the performance of micro and nanofluids with various physical effects such as magnetic field, slip effects, radiation and heat sources. Heat and mass transfer enhancement techniques are widely used in many applications in the heating and cooling or freezing process to make possible a reduction in weight and size or enhance performance during heat and mass exchanges. The book covers the two categories of flow techniques, active and passive. It discusses various considerations in the engineering sciences in the melting process, polymer industry and in metallurgy. To be more precise, it may be pointed out that many metal surgical developments involve the cooling of continuous strips or filaments by drawing them through a quiescent fluid, and in that process of drawing, these strips are sometimes stretched. In all these cases, the properties of the final product depend, to a great extent, on the rate of cooling by drawing such strips in an electrically conducting fluid subject to a magnetic field and thermal radiation. - Provides information about the governing equations for all three types of flow geometries - Explains micro polar fluid flow modeling - Offers detailed coverage of boundary value problems using MATLAB®
Book Synopsis Second Microgravity Fluid Physics Conference by :
Download or read book Second Microgravity Fluid Physics Conference written by and published by . This book was released on 1994 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: