Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Robust Estimation In The Heteroscedastic Linear Model When There Are Many Parameters
Download Robust Estimation In The Heteroscedastic Linear Model When There Are Many Parameters full books in PDF, epub, and Kindle. Read online Robust Estimation In The Heteroscedastic Linear Model When There Are Many Parameters ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Work of Raymond J. Carroll by : Marie Davidian
Download or read book The Work of Raymond J. Carroll written by Marie Davidian and published by Springer. This book was released on 2014-06-06 with total page 599 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains Raymond J. Carroll's research and commentary on its impact by leading statisticians. Each of the seven main parts focuses on a key research area: Measurement Error, Transformation and Weighting, Epidemiology, Nonparametric and Semiparametric Regression for Independent Data, Nonparametric and Semiparametric Regression for Dependent Data, Robustness, and other work. The seven subject areas reviewed in this book were chosen by Ray himself, as were the articles representing each area. The commentaries not only review Ray’s work, but are also filled with history and anecdotes. Raymond J. Carroll’s impact on statistics and numerous other fields of science is far-reaching. His vast catalog of work spans from fundamental contributions to statistical theory to innovative methodological development and new insights in disciplinary science. From the outset of his career, rather than taking the “safe” route of pursuing incremental advances, Ray has focused on tackling the most important challenges. In doing so, it is fair to say that he has defined a host of statistics areas, including weighting and transformation in regression, measurement error modeling, quantitative methods for nutritional epidemiology and non- and semiparametric regression.
Book Synopsis Introduction to Robust Estimation and Hypothesis Testing by : Rand R. Wilcox
Download or read book Introduction to Robust Estimation and Hypothesis Testing written by Rand R. Wilcox and published by Academic Press. This book was released on 2012-01-12 with total page 713 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book focuses on the practical aspects of modern and robust statistical methods. The increased accuracy and power of modern methods, versus conventional approaches to the analysis of variance (ANOVA) and regression, is remarkable. Through a combination of theoretical developments, improved and more flexible statistical methods, and the power of the computer, it is now possible to address problems with standard methods that seemed insurmountable only a few years ago"--
Book Synopsis Scientific and Technical Aerospace Reports by :
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1985 with total page 984 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Methodology in Robust and Nonparametric Statistics by : Jana Jureckova
Download or read book Methodology in Robust and Nonparametric Statistics written by Jana Jureckova and published by CRC Press. This book was released on 2012-07-20 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robust and nonparametric statistical methods have their foundation in fields ranging from agricultural science to astronomy, from biomedical sciences to the public health disciplines, and, more recently, in genomics, bioinformatics, and financial statistics. These disciplines are presently nourished by data mining and high-level computer-based algo
Book Synopsis Introduction to Robust Estimation and Hypothesis Testing by : Rand R. Wilcox
Download or read book Introduction to Robust Estimation and Hypothesis Testing written by Rand R. Wilcox and published by Academic Press. This book was released on 2016-09-02 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Robust Estimating and Hypothesis Testing, 4th Editon, is a 'how-to' on the application of robust methods using available software. Modern robust methods provide improved techniques for dealing with outliers, skewed distribution curvature and heteroscedasticity that can provide substantial gains in power as well as a deeper, more accurate and more nuanced understanding of data. Since the last edition, there have been numerous advances and improvements. They include new techniques for comparing groups and measuring effect size as well as new methods for comparing quantiles. Many new regression methods have been added that include both parametric and nonparametric techniques. The methods related to ANCOVA have been expanded considerably. New perspectives related to discrete distributions with a relatively small sample space are described as well as new results relevant to the shift function. The practical importance of these methods is illustrated using data from real world studies. The R package written for this book now contains over 1200 functions. New to this edition - 35% revised content - Covers many new and improved R functions - New techniques that deal with a wide range of situations - Extensive revisions to cover the latest developments in robust regression - Covers latest improvements in ANOVA - Includes newest rank-based methods - Describes and illustrated easy to use software
Book Synopsis Using R for Principles of Econometrics by : Constantin Colonescu
Download or read book Using R for Principles of Econometrics written by Constantin Colonescu and published by Lulu.com. This book was released on 2017-12-28 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a beginner's guide to applied econometrics using the free statistics software R. It provides and explains R solutions to most of the examples in 'Principles of Econometrics' by Hill, Griffiths, and Lim, fourth edition. 'Using R for Principles of Econometrics' requires no previous knowledge in econometrics or R programming, but elementary notions of statistics are helpful.
Book Synopsis Introduction to Robust and Quasi-Robust Statistical Methods by : W.J.J. Rey
Download or read book Introduction to Robust and Quasi-Robust Statistical Methods written by W.J.J. Rey and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 247 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Kernel Smoothing written by M.P. Wand and published by CRC Press. This book was released on 1994-12-01 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kernel smoothing refers to a general methodology for recovery of underlying structure in data sets. The basic principle is that local averaging or smoothing is performed with respect to a kernel function. This book provides uninitiated readers with a feeling for the principles, applications, and analysis of kernel smoothers. This is facilita
Book Synopsis Robust Nonlinear Regression by : Hossein Riazoshams
Download or read book Robust Nonlinear Regression written by Hossein Riazoshams and published by John Wiley & Sons. This book was released on 2018-06-11 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book to discuss robust aspects of nonlinear regression—with applications using R software Robust Nonlinear Regression: with Applications using R covers a variety of theories and applications of nonlinear robust regression. It discusses both parts of the classic and robust aspects of nonlinear regression and focuses on outlier effects. It develops new methods in robust nonlinear regression and implements a set of objects and functions in S-language under SPLUS and R software. The software covers a wide range of robust nonlinear fitting and inferences, and is designed to provide facilities for computer users to define their own nonlinear models as an object, and fit models using classic and robust methods as well as detect outliers. The implemented objects and functions can be applied by practitioners as well as researchers. The book offers comprehensive coverage of the subject in 9 chapters: Theories of Nonlinear Regression and Inference; Introduction to R; Optimization; Theories of Robust Nonlinear Methods; Robust and Classical Nonlinear Regression with Autocorrelated and Heteroscedastic errors; Outlier Detection; R Packages in Nonlinear Regression; A New R Package in Robust Nonlinear Regression; and Object Sets. The first comprehensive coverage of this field covers a variety of both theoretical and applied topics surrounding robust nonlinear regression Addresses some commonly mishandled aspects of modeling R packages for both classical and robust nonlinear regression are presented in detail in the book and on an accompanying website Robust Nonlinear Regression: with Applications using R is an ideal text for statisticians, biostatisticians, and statistical consultants, as well as advanced level students of statistics.
Book Synopsis Weighted Empirical Processes in Dynamic Nonlinear Models by : Hira L. Koul
Download or read book Weighted Empirical Processes in Dynamic Nonlinear Models written by Hira L. Koul and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a unified approach for obtaining the limiting distributions of minimum distance. It discusses classes of goodness-of-t tests for fitting an error distribution in some of these models and/or fitting a regression-autoregressive function without assuming the knowledge of the error distribution. The main tool is the asymptotic equi-continuity of certain basic weighted residual empirical processes in the uniform and L2 metrics.
Download or read book NBS Special Publication written by and published by . This book was released on 1970 with total page 574 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis An Author and Permuted Title Index to Selected Statistical Journals by : Brian L. Joiner
Download or read book An Author and Permuted Title Index to Selected Statistical Journals written by Brian L. Joiner and published by . This book was released on 1970 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: All articles, notes, queries, corrigenda, and obituaries appearing in the following journals during the indicated years are indexed: Annals of mathematical statistics, 1961-1969; Biometrics, 1965-1969#3; Biometrics, 1951-1969; Journal of the American Statistical Association, 1956-1969; Journal of the Royal Statistical Society, Series B, 1954-1969,#2; South African statistical journal, 1967-1969,#2; Technometrics, 1959-1969.--p.iv.
Book Synopsis Transformation and Weighting in Regression by : Raymond J. Carroll
Download or read book Transformation and Weighting in Regression written by Raymond J. Carroll and published by Routledge. This book was released on 2017-10-19 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides a careful review of the major statistical techniques used to analyze regression data with nonconstant variability and skewness. The authors have developed statistical techniques--such as formal fitting methods and less formal graphical techniques-- that can be applied to many problems across a range of disciplines, including pharmacokinetics, econometrics, biochemical assays, and fisheries research. While the main focus of the book in on data transformation and weighting, it also draws upon ideas from diverse fields such as influence diagnostics, robustness, bootstrapping, nonparametric data smoothing, quasi-likelihood methods, errors-in-variables, and random coefficients. The authors discuss the computation of estimates and give numerous examples using real data. The book also includes an extensive treatment of estimating variance functions in regression.
Book Synopsis Partially Linear Models by : Wolfgang Härdle
Download or read book Partially Linear Models written by Wolfgang Härdle and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 210 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the last ten years, there has been increasing interest and activity in the general area of partially linear regression smoothing in statistics. Many methods and techniques have been proposed and studied. This monograph hopes to bring an up-to-date presentation of the state of the art of partially linear regression techniques. The emphasis is on methodologies rather than on the theory, with a particular focus on applications of partially linear regression techniques to various statistical problems. These problems include least squares regression, asymptotically efficient estimation, bootstrap resampling, censored data analysis, linear measurement error models, nonlinear measurement models, nonlinear and nonparametric time series models.
Book Synopsis Modern Statistics for the Social and Behavioral Sciences by : Rand Wilcox
Download or read book Modern Statistics for the Social and Behavioral Sciences written by Rand Wilcox and published by CRC Press. This book was released on 2017-08-15 with total page 730 pages. Available in PDF, EPUB and Kindle. Book excerpt: Requiring no prior training, Modern Statistics for the Social and Behavioral Sciences provides a two-semester, graduate-level introduction to basic statistical techniques that takes into account recent advances and insights that are typically ignored in an introductory course. Hundreds of journal articles make it clear that basic techniques, routinely taught and used, can perform poorly when dealing with skewed distributions, outliers, heteroscedasticity (unequal variances) and curvature. Methods for dealing with these concerns have been derived and can provide a deeper, more accurate and more nuanced understanding of data. A conceptual basis is provided for understanding when and why standard methods can have poor power and yield misleading measures of effect size. Modern techniques for dealing with known concerns are described and illustrated. Features: Presents an in-depth description of both classic and modern methods Explains and illustrates why recent advances can provide more power and a deeper understanding of data Provides numerous illustrations using the software R Includes an R package with over 1300 functions Includes a solution manual giving detailed answers to all of the exercises This second edition describes many recent advances relevant to basic techniques. For example, a vast array of new and improved methods is now available for dealing with regression, including substantially improved ANCOVA techniques. The coverage of multiple comparison procedures has been expanded and new ANOVA techniques are described. Rand Wilcox is a professor of psychology at the University of Southern California. He is the author of 13 other statistics books and the creator of the R package WRS. He currently serves as an associate editor for five statistics journals. He is a fellow of the Association for Psychological Science and an elected member of the International Statistical Institute.
Book Synopsis Modeling Ordered Choices by : William H. Greene
Download or read book Modeling Ordered Choices written by William H. Greene and published by Cambridge University Press. This book was released on 2010-04-08 with total page 383 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is increasingly common for analysts to seek out the opinions of individuals and organizations using attitudinal scales such as degree of satisfaction or importance attached to an issue. Examples include levels of obesity, seriousness of a health condition, attitudes towards service levels, opinions on products, voting intentions, and the degree of clarity of contracts. Ordered choice models provide a relevant methodology for capturing the sources of influence that explain the choice made amongst a set of ordered alternatives. The methods have evolved to a level of sophistication that can allow for heterogeneity in the threshold parameters, in the explanatory variables (through random parameters), and in the decomposition of the residual variance. This book brings together contributions in ordered choice modeling from a number of disciplines, synthesizing developments over the last fifty years, and suggests useful extensions to account for the wide range of sources of influence on choice.
Book Synopsis Directions in Robust Statistics and Diagnostics by : Werner Stahel
Download or read book Directions in Robust Statistics and Diagnostics written by Werner Stahel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This IMA Volume in Mathematics and its Applications DIRECTIONS IN ROBUST STATISTICS AND DIAGNOSTICS is based on the proceedings of the first four weeks of the six week IMA 1989 summer program "Robustness, Diagnostics, Computing and Graphics in Statistics". An important objective of the organizers was to draw a broad set of statisticians working in robustness or diagnostics into collaboration on the challenging problems in these areas, particularly on the interface between them. We thank the organizers of the robustness and diagnostics program Noel Cressie, Thomas P. Hettmansperger, Peter J. Huber, R. Douglas Martin, and especially Werner Stahel and Sanford Weisberg who edited the proceedings. A vner Friedman Willard Miller, Jr. PREFACE Central themes of all statistics are estimation, prediction, and making decisions under uncertainty. A standard approach to these goals is through parametric mod elling. Parametric models can give a problem sufficient structure to allow standard, well understood paradigms to be applied to make the required inferences. If, how ever, the parametric model is not completely correct, then the standard inferential methods may not give reasonable answers. In the last quarter century, particularly with the advent of readily available computing, more attention has been paid to the problem of inference when the parametric model used is not correctly specified.