Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Robust Estimation In Structured Linear Regression
Download Robust Estimation In Structured Linear Regression full books in PDF, epub, and Kindle. Read online Robust Estimation In Structured Linear Regression ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Robustness in Statistics by : Robert L. Launer
Download or read book Robustness in Statistics written by Robert L. Launer and published by . This book was released on 1979 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to robust estimation; The robustness of residual displays; Robust smoothing; Robust pitman-like estimators; Robust estimation in the presence of outliers; Study of robustness by simulation: particularly improvement by adjustment and combination; Robust techniques for the user; Application of robust regression to trajectory data reduction; Tests for censoring of extreme values (especially) when population distributions are incompletely defined; Robust estimation for time series autoregressions; Robust techniques in communication; Robustness in the strategy of scientific model building; A density-quantile function perspective on robust.
Book Synopsis Structural Modeling by Example by : Peter Cuttance
Download or read book Structural Modeling by Example written by Peter Cuttance and published by Cambridge University Press. This book was released on 1987 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a comprehensive overview of the application of structural equation models in the social and behavioural sciences and in educational research.
Book Synopsis Robustness in Statistics by : Robert L. Launer
Download or read book Robustness in Statistics written by Robert L. Launer and published by Academic Press. This book was released on 2014-05-12 with total page 313 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robustness in Statistics contains the proceedings of a Workshop on Robustness in Statistics held on April 11-12, 1978, at the Army Research Office in Research Triangle Park, North Carolina. The papers review the state of the art in statistical robustness and cover topics ranging from robust estimation to the robustness of residual displays and robust smoothing. The application of robust regression to trajectory data reduction is also discussed. Comprised of 14 chapters, this book begins with an introduction to robust estimation, paying particular attention to iteration schemes and error structure of estimators. Sensitivity and influence curves as well as their connection with jackknife estimates are described. The reader is then introduced to a simple analog of trimmed means that can be used for studying residuals from a robust point-of-view; a class of robust estimators (called P-estimators) based on the location and scale-invariant Pitman estimators of location; and robust estimation in the presence of outliers. Subsequent chapters deal with robust regression and its use to reduce trajectory data; tests for censoring of extreme values, especially when population distributions are incompletely defined; and robust estimation for time series autoregressions. This monograph should be of interest to mathematicians and statisticians.
Book Synopsis Structured Robust Covariance Estimation by : Ami Wiesel
Download or read book Structured Robust Covariance Estimation written by Ami Wiesel and published by . This book was released on 2015-12-04 with total page 108 pages. Available in PDF, EPUB and Kindle. Book excerpt: We consider robust covariance estimation with an emphasis on Tyler's M-estimator. This method provides accurate inference of an unknown covariance in non-standard settings, including heavy-tailed distributions and outlier contaminated scenarios. We begin with a survey of the estimator and its various derivations in the classical unconstrained settings. The latter rely on the theory of g-convex analysis which we briefly review. Building on this background, we enhance robust covariance estimation via g-convex regularization, and allow accurate inference using a smaller number of samples. We consider shrinkage, diagonal loading, and prior knowledge in the form of symmetry and Kronecker structures. We introduce these concepts to the world of robust covariance estimation, and demonstrate how to exploit them in a computationally and statistically efficient manner.
Book Synopsis Introduction to Robust Estimation and Hypothesis Testing by : Rand R. Wilcox
Download or read book Introduction to Robust Estimation and Hypothesis Testing written by Rand R. Wilcox and published by Academic Press. This book was released on 2012-01-12 with total page 713 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book focuses on the practical aspects of modern and robust statistical methods. The increased accuracy and power of modern methods, versus conventional approaches to the analysis of variance (ANOVA) and regression, is remarkable. Through a combination of theoretical developments, improved and more flexible statistical methods, and the power of the computer, it is now possible to address problems with standard methods that seemed insurmountable only a few years ago"--
Book Synopsis Robust Statistics by : Ricardo A. Maronna
Download or read book Robust Statistics written by Ricardo A. Maronna and published by John Wiley & Sons. This book was released on 2019-01-04 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of this popular text on robust statistics, thoroughly updated to include new and improved methods and focus on implementation of methodology using the increasingly popular open-source software R. Classical statistics fail to cope well with outliers associated with deviations from standard distributions. Robust statistical methods take into account these deviations when estimating the parameters of parametric models, thus increasing the reliability of fitted models and associated inference. This new, second edition of Robust Statistics: Theory and Methods (with R) presents a broad coverage of the theory of robust statistics that is integrated with computing methods and applications. Updated to include important new research results of the last decade and focus on the use of the popular software package R, it features in-depth coverage of the key methodology, including regression, multivariate analysis, and time series modeling. The book is illustrated throughout by a range of examples and applications that are supported by a companion website featuring data sets and R code that allow the reader to reproduce the examples given in the book. Unlike other books on the market, Robust Statistics: Theory and Methods (with R) offers the most comprehensive, definitive, and up-to-date treatment of the subject. It features chapters on estimating location and scale; measuring robustness; linear regression with fixed and with random predictors; multivariate analysis; generalized linear models; time series; numerical algorithms; and asymptotic theory of M-estimates. Explains both the use and theoretical justification of robust methods Guides readers in selecting and using the most appropriate robust methods for their problems Features computational algorithms for the core methods Robust statistics research results of the last decade included in this 2nd edition include: fast deterministic robust regression, finite-sample robustness, robust regularized regression, robust location and scatter estimation with missing data, robust estimation with independent outliers in variables, and robust mixed linear models. Robust Statistics aims to stimulate the use of robust methods as a powerful tool to increase the reliability and accuracy of statistical modelling and data analysis. It is an ideal resource for researchers, practitioners, and graduate students in statistics, engineering, computer science, and physical and social sciences.
Book Synopsis Nonparametric Functional Data Analysis by : Frédéric Ferraty
Download or read book Nonparametric Functional Data Analysis written by Frédéric Ferraty and published by Springer Science & Business Media. This book was released on 2006-11-22 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern apparatuses allow us to collect samples of functional data, mainly curves but also images. On the other hand, nonparametric statistics produces useful tools for standard data exploration. This book links these two fields of modern statistics by explaining how functional data can be studied through parameter-free statistical ideas. At the same time it shows how functional data can be studied through parameter-free statistical ideas, and offers an original presentation of new nonparametric statistical methods for functional data analysis.
Book Synopsis Developments in Robust Statistics by : Rudolf Dutter
Download or read book Developments in Robust Statistics written by Rudolf Dutter and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 445 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aspects of Robust Statistics are important in many areas. Based on the International Conference on Robust Statistics 2001 (ICORS 2001) in Vorau, Austria, this volume discusses future directions of the discipline, bringing together leading scientists, experienced researchers and practitioners, as well as younger researchers. The papers cover a multitude of different aspects of Robust Statistics. For instance, the fundamental problem of data summary (weights of evidence) is considered and its robustness properties are studied. Further theoretical subjects include e.g.: robust methods for skewness, time series, longitudinal data, multivariate methods, and tests. Some papers deal with computational aspects and algorithms. Finally, the aspects of application and programming tools complete the volume.
Book Synopsis Robust Estimation and Failure Detection by : Rami S. Mangoubi
Download or read book Robust Estimation and Failure Detection written by Rami S. Mangoubi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces robust estimation and failure detection, with a thorough presentation of Kalman filtering and H-infinity filtering theory. These estimation techniques make it possible for engineers to design estimators that are more general and robust. The book also reviews the likelihood ratio method for failure detection and demonstrates how to design failure detectors that are sensitive to failures but insensitive to model variations. This book will give engineers a concise presentation of these important techniques, as well as an overview of important robust control developments of the last fifteen years.
Book Synopsis Theory and Applications of Recent Robust Methods by : Mia Hubert
Download or read book Theory and Applications of Recent Robust Methods written by Mia Hubert and published by Birkhäuser. This book was released on 2012-12-06 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intended for both researchers and practitioners, this book will be a valuable resource for studying and applying recent robust statistical methods. It contains up-to-date research results in the theory of robust statistics Treats computational aspects and algorithms and shows interesting and new applications.
Book Synopsis Data-Driven Fault Detection and Reasoning for Industrial Monitoring by : Jing Wang
Download or read book Data-Driven Fault Detection and Reasoning for Industrial Monitoring written by Jing Wang and published by Springer Nature. This book was released on 2022-01-03 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book assesses the potential of data-driven methods in industrial process monitoring engineering. The process modeling, fault detection, classification, isolation, and reasoning are studied in detail. These methods can be used to improve the safety and reliability of industrial processes. Fault diagnosis, including fault detection and reasoning, has attracted engineers and scientists from various fields such as control, machinery, mathematics, and automation engineering. Combining the diagnosis algorithms and application cases, this book establishes a basic framework for this topic and implements various statistical analysis methods for process monitoring. This book is intended for senior undergraduate and graduate students who are interested in fault diagnosis technology, researchers investigating automation and industrial security, professional practitioners and engineers working on engineering modeling and data processing applications. This is an open access book.
Book Synopsis Introduction to Robust Estimation and Hypothesis Testing by : Rand R. Wilcox
Download or read book Introduction to Robust Estimation and Hypothesis Testing written by Rand R. Wilcox and published by Academic Press. This book was released on 2016-09-02 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Robust Estimating and Hypothesis Testing, 4th Editon, is a 'how-to' on the application of robust methods using available software. Modern robust methods provide improved techniques for dealing with outliers, skewed distribution curvature and heteroscedasticity that can provide substantial gains in power as well as a deeper, more accurate and more nuanced understanding of data. Since the last edition, there have been numerous advances and improvements. They include new techniques for comparing groups and measuring effect size as well as new methods for comparing quantiles. Many new regression methods have been added that include both parametric and nonparametric techniques. The methods related to ANCOVA have been expanded considerably. New perspectives related to discrete distributions with a relatively small sample space are described as well as new results relevant to the shift function. The practical importance of these methods is illustrated using data from real world studies. The R package written for this book now contains over 1200 functions. New to this edition - 35% revised content - Covers many new and improved R functions - New techniques that deal with a wide range of situations - Extensive revisions to cover the latest developments in robust regression - Covers latest improvements in ANOVA - Includes newest rank-based methods - Describes and illustrated easy to use software
Book Synopsis Distributionally Robust Learning by : Ruidi Chen
Download or read book Distributionally Robust Learning written by Ruidi Chen and published by . This book was released on 2020-12-23 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Modern Methods for Robust Regression by : Robert Andersen
Download or read book Modern Methods for Robust Regression written by Robert Andersen and published by SAGE. This book was released on 2008 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering an in-depth treatment of robust and resistant regression, this volume takes an applied approach and offers readers empirical examples to illustrate key concepts.
Book Synopsis Industrial Statistics by : Christos Kitsos
Download or read book Industrial Statistics written by Christos Kitsos and published by Springer Science & Business Media. This book was released on 1997-08-13 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Devoted to the growing impact of statistical methodology and statistical computing in industry the aim of this book is to link the three components: Statistics - industry - computers. Different areas of industrial statistics are presented by a number of excellent contributions. The following topics are covered: Quality control, engineering and monitoring; reliability and failure time analysis, experimental design; repeated measurements - multiple inference; pharma - statistics; computing, imaging and perception. This book concentrates on the interface between statistical needs in industry and statistical methods developed by statisticians and engineers.
Download or read book Robustness written by Lars Peter Hansen and published by Princeton University Press. This book was released on 2016-06-28 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: The standard theory of decision making under uncertainty advises the decision maker to form a statistical model linking outcomes to decisions and then to choose the optimal distribution of outcomes. This assumes that the decision maker trusts the model completely. But what should a decision maker do if the model cannot be trusted? Lars Hansen and Thomas Sargent, two leading macroeconomists, push the field forward as they set about answering this question. They adapt robust control techniques and apply them to economics. By using this theory to let decision makers acknowledge misspecification in economic modeling, the authors develop applications to a variety of problems in dynamic macroeconomics. Technical, rigorous, and self-contained, this book will be useful for macroeconomists who seek to improve the robustness of decision-making processes.
Book Synopsis Robust Regression and Outlier Detection by : Peter J. Rousseeuw
Download or read book Robust Regression and Outlier Detection written by Peter J. Rousseeuw and published by John Wiley & Sons. This book was released on 2005-02-25 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selectedbooks that have been made more accessible to consumers in an effortto increase global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "The writing style is clear and informal, and much of thediscussion is oriented to application. In short, the book is akeeper." –Mathematical Geology "I would highly recommend the addition of this book to thelibraries of both students and professionals. It is a usefultextbook for the graduate student, because it emphasizes both thephilosophy and practice of robustness in regression settings, andit provides excellent examples of precise, logical proofs oftheorems. . . .Even for those who are familiar with robustness, thebook will be a good reference because it consolidates the researchin high-breakdown affine equivariant estimators and includes anextensive bibliography in robust regression, outlier diagnostics,and related methods. The aim of this book, the authors tell us, is‘to make robust regression available for everyday statisticalpractice.’ Rousseeuw and Leroy have included all of thenecessary ingredients to make this happen." –Journal of the American Statistical Association