Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Robust Arbitrary Order Mixed Finite Element Methods For The Incompressible Stokes Equations
Download Robust Arbitrary Order Mixed Finite Element Methods For The Incompressible Stokes Equations full books in PDF, epub, and Kindle. Read online Robust Arbitrary Order Mixed Finite Element Methods For The Incompressible Stokes Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Finite Element Methods for Incompressible Flow Problems by : Volker John
Download or read book Finite Element Methods for Incompressible Flow Problems written by Volker John and published by Springer. This book was released on 2016-10-27 with total page 816 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores finite element methods for incompressible flow problems: Stokes equations, stationary Navier-Stokes equations and time-dependent Navier-Stokes equations. It focuses on numerical analysis, but also discusses the practical use of these methods and includes numerical illustrations. It also provides a comprehensive overview of analytical results for turbulence models. The proofs are presented step by step, allowing readers to more easily understand the analytical techniques.
Book Synopsis Handbook of Numerical Analysis by : Philippe G. Ciarlet
Download or read book Handbook of Numerical Analysis written by Philippe G. Ciarlet and published by Gulf Professional Publishing. This book was released on 1990 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations by :
Download or read book Projection and Quasi-Compressibility Methods for Solving the Incompressible Navier-Stokes Equations written by and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: Projection methods had been introduced in the late sixties by A. Chorin and R. Teman to decouple the computation of velocity and pressure within the time-stepping for solving the nonstationary Navier-Stokes equations. Despite the good performance of projection methods in practical computations, their success remained somewhat mysterious as the operator splitting implicitly introduces a nonphysical boundary condition for the pressure. The objectives of this monograph are twofold. First, a rigorous error analysis is presented for existing projection methods by means of relating them to so-called quasi-compressibility methods (e.g. penalty method, pressure stabilzation method, etc.). This approach highlights the intrinsic error mechanisms of these schemes and explains the reasons for their limitations. Then, in the second part, more sophisticated new schemes are constructed and analyzed which are exempted from most of the deficiencies of the classical projection and quasi-compressibility methods. '... this book should be mandatory reading for applied mathematicians specializing in computational fluid dynamics.' J.-L.Guermond. Mathematical Reviews, Ann Arbor
Book Synopsis Finite Elements and Fast Iterative Solvers by : Howard Elman
Download or read book Finite Elements and Fast Iterative Solvers written by Howard Elman and published by OUP Oxford. This book was released on 2014-06-19 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a description of why and how to do Scientific Computing for fundamental models of fluid flow. It contains introduction, motivation, analysis, and algorithms and is closely tied to freely available MATLAB codes that implement the methods described. The focus is on finite element approximation methods and fast iterative solution methods for the consequent linear(ized) systems arising in important problems that model incompressible fluid flow. The problems addressed are the Poisson equation, Convection-Diffusion problem, Stokes problem and Navier-Stokes problem, including new material on time-dependent problems and models of multi-physics. The corresponding iterative algebra based on preconditioned Krylov subspace and multigrid techniques is for symmetric and positive definite, nonsymmetric positive definite, symmetric indefinite and nonsymmetric indefinite matrix systems respectively. For each problem and associated solvers there is a description of how to compute together with theoretical analysis that guides the choice of approaches and describes what happens in practice in the many illustrative numerical results throughout the book (computed with the freely downloadable IFISS software). All of the numerical results should be reproducible by readers who have access to MATLAB and there is considerable scope for experimentation in the "computational laboratory " provided by the software. Developments in the field since the first edition was published have been represented in three new chapters covering optimization with PDE constraints (Chapter 5); solution of unsteady Navier-Stokes equations (Chapter 10); solution of models of buoyancy-driven flow (Chapter 11). Each chapter has many theoretical problems and practical computer exercises that involve the use of the IFISS software. This book is suitable as an introduction to iterative linear solvers or more generally as a model of Scientific Computing at an advanced undergraduate or beginning graduate level.
Book Synopsis Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples by : Robert Klöfkorn
Download or read book Finite Volumes for Complex Applications IX - Methods, Theoretical Aspects, Examples written by Robert Klöfkorn and published by Springer Nature. This book was released on 2020-06-09 with total page 727 pages. Available in PDF, EPUB and Kindle. Book excerpt: The proceedings of the 9th conference on "Finite Volumes for Complex Applications" (Bergen, June 2020) are structured in two volumes. The first volume collects the focused invited papers, as well as the reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods. Topics covered include convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. Altogether, a rather comprehensive overview is given on the state of the art in the field. The properties of the methods considered in the conference give them distinguished advantages for a number of applications. These include fluid dynamics, magnetohydrodynamics, structural analysis, nuclear physics, semiconductor theory, carbon capture utilization and storage, geothermal energy and further topics. The second volume covers reviewed contributions reporting successful applications of finite volume and related methods in these fields. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability, making the finite volume methods compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. The book is a valuable resource for researchers, PhD and master’s level students in numerical analysis, scientific computing and related fields such as partial differential equations, as well as engineers working in numerical modeling and simulations.
Book Synopsis Finite Elements by : Sashikumaar Ganesan
Download or read book Finite Elements written by Sashikumaar Ganesan and published by Cambridge University Press. This book was released on 2017-05-11 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written in easy to understand language, this self-explanatory guide introduces the fundamentals of finite element methods and its application to differential equations. Beginning with a brief introduction to Sobolev spaces and elliptic scalar problems, the text progresses through an explanation of finite element spaces and estimates for the interpolation error. The concepts of finite element methods for parabolic scalar parabolic problems, object-oriented finite element algorithms, efficient implementation techniques, and high dimensional parabolic problems are presented in different chapters. Recent advances in finite element methods, including non-conforming finite elements for boundary value problems of higher order and approaches for solving differential equations in high dimensional domains are explained for the benefit of the reader. Numerous solved examples and mathematical theorems are interspersed throughout the text for enhanced learning.
Book Synopsis Automated Solution of Differential Equations by the Finite Element Method by : Anders Logg
Download or read book Automated Solution of Differential Equations by the Finite Element Method written by Anders Logg and published by Springer Science & Business Media. This book was released on 2012-02-24 with total page 723 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.
Book Synopsis Non-standard Discretisation Methods in Solid Mechanics by : Jörg Schröder
Download or read book Non-standard Discretisation Methods in Solid Mechanics written by Jörg Schröder and published by Springer Nature. This book was released on 2022-04-14 with total page 561 pages. Available in PDF, EPUB and Kindle. Book excerpt: This edited volume summarizes research being pursued within the DFG Priority Programme 1748: "Reliable Simulation Methods in Solid Mechanics. Development of non-standard discretisation methods, mechanical and mathematical analysis", the aim of which was to develop novel discretisation methods based e.g. on mixed finite element methods, isogeometric approaches as well as discontinuous Galerkin formulations, including a sound mathematical analysis for geometrically as well as physically nonlinear problems. The Priority Programme has established an international framework for mechanical and applied mathematical research to pursue open challenges on an inter-disciplinary level. The compiled results can be understood as state of the art in the research field and show promising ways of further research in the respective areas. The book is intended for doctoral and post-doctoral students in civil engineering, mechanical engineering, applied mathematics and physics, as well as industrial researchers interested in the field.
Book Synopsis Fluids Under Pressure by : Tomáš Bodnár
Download or read book Fluids Under Pressure written by Tomáš Bodnár and published by Springer Nature. This book was released on 2020-04-30 with total page 647 pages. Available in PDF, EPUB and Kindle. Book excerpt: This contributed volume is based on talks given at the August 2016 summer school “Fluids Under Pressure,” held in Prague as part of the “Prague-Sum” series. Written by experts in their respective fields, chapters explore the complex role that pressure plays in physics, mathematical modeling, and fluid flow analysis. Specific topics covered include: Oceanic and atmospheric dynamics Incompressible flows Viscous compressible flows Well-posedness of the Navier-Stokes equations Weak solutions to the Navier-Stokes equations Fluids Under Pressure will be a valuable resource for graduate students and researchers studying fluid flow dynamics.
Book Synopsis The Hybrid High-Order Method for Polytopal Meshes by : Daniele Antonio Di Pietro
Download or read book The Hybrid High-Order Method for Polytopal Meshes written by Daniele Antonio Di Pietro and published by Springer Nature. This book was released on 2020-04-03 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides an introduction to the design and analysis of Hybrid High-Order methods for diffusive problems, along with a panel of applications to advanced models in computational mechanics. Hybrid High-Order methods are new-generation numerical methods for partial differential equations with features that set them apart from traditional ones. These include: the support of polytopal meshes, including non-star-shaped elements and hanging nodes; the possibility of having arbitrary approximation orders in any space dimension; an enhanced compliance with the physics; and a reduced computational cost thanks to compact stencil and static condensation. The first part of the monograph lays the foundations of the method, considering linear scalar second-order models, including scalar diffusion – possibly heterogeneous and anisotropic – and diffusion-advection-reaction. The second part addresses applications to more complex models from the engineering sciences: non-linear Leray-Lions problems, elasticity, and incompressible fluid flows. This book is primarily intended for graduate students and researchers in applied mathematics and numerical analysis, who will find here valuable analysis tools of general scope.
Book Synopsis Higher-Order Finite Element Methods by : Pavel Solin
Download or read book Higher-Order Finite Element Methods written by Pavel Solin and published by CRC Press. This book was released on 2003-07-28 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: The finite element method has always been a mainstay for solving engineering problems numerically. The most recent developments in the field clearly indicate that its future lies in higher-order methods, particularly in higher-order hp-adaptive schemes. These techniques respond well to the increasing complexity of engineering simulations and
Book Synopsis The Stokes Equations by : Werner Varnhorn
Download or read book The Stokes Equations written by Werner Varnhorn and published by De Gruyter Akademie Forschung. This book was released on 1994 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present book consists of three parts. In the first part a theory of solvability for the stationary Stokes equations in exterior domains is developed. We prove existence of strong solutions in Sobolev spaces and use a localisation principle and the divergence equation to deduce further properties of the solution (uniqueness, asymptotics).
Book Synopsis Fluid-structure Interactions by : Thomas Richter
Download or read book Fluid-structure Interactions written by Thomas Richter and published by Springer. This book was released on 2017-08-26 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book starts by introducing the fundamental concepts of mathematical continuum mechanics for fluids and solids and their coupling. Special attention is given to the derivation of variational formulations for the subproblems describing fluid- and solid-mechanics as well as the coupled fluid-structure interaction problem. Two monolithic formulations for fluid-structure interactions are described in detail: the well-established ALE formulation and the modern Fully Eulerian formulation, which can effectively deal with problems featuring large deformation and contact. Further, the book provides details on state-of-the-art discretization schemes for fluid- and solid-mechanics and considers the special needs of coupled problems with interface-tracking and interface-capturing techniques. Lastly, advanced topics like goal-oriented error estimation, multigrid solution and gradient-based optimization schemes are discussed in the context of fluid-structure interaction problems.
Book Synopsis Computational Methods for Complex Liquid-Fluid Interfaces by : Mohammad Taeibi Rahni
Download or read book Computational Methods for Complex Liquid-Fluid Interfaces written by Mohammad Taeibi Rahni and published by CRC Press. This book was released on 2015-11-11 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Methods for Complex Liquid-Fluid Interfaces highlights key computational challenges involved in the two-way coupling of complex liquid-fluid interfaces. The book covers a variety of cutting-edge experimental and computational techniques ranging from macro- to meso- and microscale approaches (including pivotal applications). As example
Book Synopsis 75 Years of Mathematics of Computation by : Susanne C. Brenner
Download or read book 75 Years of Mathematics of Computation written by Susanne C. Brenner and published by American Mathematical Soc.. This book was released on 2020-07-29 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: The year 2018 marked the 75th anniversary of the founding of Mathematics of Computation, one of the four primary research journals published by the American Mathematical Society and the oldest research journal devoted to computational mathematics. To celebrate this milestone, the symposium “Celebrating 75 Years of Mathematics of Computation” was held from November 1–3, 2018, at the Institute for Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island. The sixteen papers in this volume, written by the symposium speakers and editors of the journal, include both survey articles and new contributions. On the discrete side, there are four papers covering topics in computational number theory and computational algebra. On the continuous side, there are twelve papers covering topics in machine learning, high dimensional approximations, nonlocal and fractional elliptic problems, gradient flows, hyperbolic conservation laws, Maxwell's equations, Stokes's equations, a posteriori error estimation, and iterative methods. Together they provide a snapshot of significant achievements in the past quarter century in computational mathematics and also in important current trends.
Book Synopsis The Finite Element Method: Theory, Implementation, and Applications by : Mats G. Larson
Download or read book The Finite Element Method: Theory, Implementation, and Applications written by Mats G. Larson and published by Springer Science & Business Media. This book was released on 2013-01-13 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.
Book Synopsis Least-Squares Finite Element Methods by : Pavel B. Bochev
Download or read book Least-Squares Finite Element Methods written by Pavel B. Bochev and published by Springer Science & Business Media. This book was released on 2009-04-28 with total page 669 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their emergence, finite element methods have taken a place as one of the most versatile and powerful methodologies for the approximate numerical solution of Partial Differential Equations. These methods are used in incompressible fluid flow, heat, transfer, and other problems. This book provides researchers and practitioners with a concise guide to the theory and practice of least-square finite element methods, their strengths and weaknesses, established successes, and open problems.