Manifolds, Sheaves, and Cohomology

Download Manifolds, Sheaves, and Cohomology PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3658106336
Total Pages : 366 pages
Book Rating : 4.6/5 (581 download)

DOWNLOAD NOW!


Book Synopsis Manifolds, Sheaves, and Cohomology by : Torsten Wedhorn

Download or read book Manifolds, Sheaves, and Cohomology written by Torsten Wedhorn and published by Springer. This book was released on 2016-07-25 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains techniques that are essential in almost all branches of modern geometry such as algebraic geometry, complex geometry, or non-archimedian geometry. It uses the most accessible case, real and complex manifolds, as a model. The author especially emphasizes the difference between local and global questions. Cohomology theory of sheaves is introduced and its usage is illustrated by many examples.

Natural Operations in Differential Geometry

Download Natural Operations in Differential Geometry PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3662029502
Total Pages : 440 pages
Book Rating : 4.6/5 (62 download)

DOWNLOAD NOW!


Book Synopsis Natural Operations in Differential Geometry by : Ivan Kolar

Download or read book Natural Operations in Differential Geometry written by Ivan Kolar and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this work is threefold: First it should be a monographical work on natural bundles and natural op erators in differential geometry. This is a field which every differential geometer has met several times, but which is not treated in detail in one place. Let us explain a little, what we mean by naturality. Exterior derivative commutes with the pullback of differential forms. In the background of this statement are the following general concepts. The vector bundle A kT* M is in fact the value of a functor, which associates a bundle over M to each manifold M and a vector bundle homomorphism over f to each local diffeomorphism f between manifolds of the same dimension. This is a simple example of the concept of a natural bundle. The fact that exterior derivative d transforms sections of A kT* M into sections of A k+1T* M for every manifold M can be expressed by saying that d is an operator from A kT* M into A k+1T* M.

A Course in Homological Algebra

Download A Course in Homological Algebra PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 146849936X
Total Pages : 348 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis A Course in Homological Algebra by : P.J. Hilton

Download or read book A Course in Homological Algebra written by P.J. Hilton and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this chapter we are largely influenced in our choice of material by the demands of the rest of the book. However, we take the view that this is an opportunity for the student to grasp basic categorical notions which permeate so much of mathematics today, including, of course, algebraic topology, so that we do not allow ourselves to be rigidly restricted by our immediate objectives. A reader totally unfamiliar with category theory may find it easiest to restrict his first reading of Chapter II to Sections 1 to 6; large parts of the book are understandable with the material presented in these sections. Another reader, who had already met many examples of categorical formulations and concepts might, in fact, prefer to look at Chapter II before reading Chapter I. Of course the reader thoroughly familiar with category theory could, in principal, omit Chapter II, except perhaps to familiarize himself with the notations employed. In Chapter III we begin the proper study of homological algebra by looking in particular at the group ExtA(A, B), where A and Bare A-modules. It is shown how this group can be calculated by means of a projective presentation of A, or an injective presentation of B; and how it may also be identified with the group of equivalence classes of extensions of the quotient module A by the submodule B.

Homology Theory

Download Homology Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461208815
Total Pages : 258 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Homology Theory by : James W. Vick

Download or read book Homology Theory written by James W. Vick and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to some basic ideas in algebraic topology is devoted to the foundations and applications of homology theory. After the essentials of singular homology and some important applications are given, successive topics covered include attaching spaces, finite CW complexes, cohomology products, manifolds, Poincare duality, and fixed point theory. This second edition includes a chapter on covering spaces and many new exercises.

Lecture Notes in Algebraic Topology

Download Lecture Notes in Algebraic Topology PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470473682
Total Pages : 385 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Lecture Notes in Algebraic Topology by : James F. Davis

Download or read book Lecture Notes in Algebraic Topology written by James F. Davis and published by American Mathematical Society. This book was released on 2023-05-22 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic and geometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, some knowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstruction theory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to present proofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the “big picture”, teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, and homological algebra. The exposition in the text is clear; special cases are presented over complex general statements.

Homological Algebra (PMS-19), Volume 19

Download Homological Algebra (PMS-19), Volume 19 PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 1400883849
Total Pages : 408 pages
Book Rating : 4.4/5 (8 download)

DOWNLOAD NOW!


Book Synopsis Homological Algebra (PMS-19), Volume 19 by : Henry Cartan

Download or read book Homological Algebra (PMS-19), Volume 19 written by Henry Cartan and published by Princeton University Press. This book was released on 2016-06-02 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: When this book was written, methods of algebraic topology had caused revolutions in the world of pure algebra. To clarify the advances that had been made, Cartan and Eilenberg tried to unify the fields and to construct the framework of a fully fledged theory. The invasion of algebra had occurred on three fronts through the construction of cohomology theories for groups, Lie algebras, and associative algebras. This book presents a single homology (and also cohomology) theory that embodies all three; a large number of results is thus established in a general framework. Subsequently, each of the three theories is singled out by a suitable specialization, and its specific properties are studied. The starting point is the notion of a module over a ring. The primary operations are the tensor product of two modules and the groups of all homomorphisms of one module into another. From these, "higher order" derived of operations are obtained, which enjoy all the properties usually attributed to homology theories. This leads in a natural way to the study of "functors" and of their "derived functors." This mathematical masterpiece will appeal to all mathematicians working in algebraic topology.

The $K$-book

Download The $K$-book PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821891324
Total Pages : 634 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis The $K$-book by : Charles A. Weibel

Download or read book The $K$-book written by Charles A. Weibel and published by American Mathematical Soc.. This book was released on 2013-06-13 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: Informally, $K$-theory is a tool for probing the structure of a mathematical object such as a ring or a topological space in terms of suitably parameterized vector spaces and producing important intrinsic invariants which are useful in the study of algebr

A Concise Course in Algebraic Topology

Download A Concise Course in Algebraic Topology PDF Online Free

Author :
Publisher : University of Chicago Press
ISBN 13 : 9780226511832
Total Pages : 262 pages
Book Rating : 4.5/5 (118 download)

DOWNLOAD NOW!


Book Synopsis A Concise Course in Algebraic Topology by : J. P. May

Download or read book A Concise Course in Algebraic Topology written by J. P. May and published by University of Chicago Press. This book was released on 1999-09 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.

A history of the second fifty years, American Mathematical Society 1939-88

Download A history of the second fifty years, American Mathematical Society 1939-88 PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821896761
Total Pages : 368 pages
Book Rating : 4.8/5 (967 download)

DOWNLOAD NOW!


Book Synopsis A history of the second fifty years, American Mathematical Society 1939-88 by : Everett Pitcher

Download or read book A history of the second fifty years, American Mathematical Society 1939-88 written by Everett Pitcher and published by American Mathematical Soc.. This book was released on 1988-12-31 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book chronicles the Society's activities over fifty years, as membership grew, as publications became more numerous and diverse, as the number of meetings and conferences increased, and as services to the mathematical community expanded. To download free chapters of this book, click here.

The Steenrod Algebra and Its Applications

Download The Steenrod Algebra and Its Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540364374
Total Pages : 331 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis The Steenrod Algebra and Its Applications by : F. P. Peterson

Download or read book The Steenrod Algebra and Its Applications written by F. P. Peterson and published by Springer. This book was released on 2006-11-15 with total page 331 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34

Download Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34 PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691223807
Total Pages : 526 pages
Book Rating : 4.6/5 (912 download)

DOWNLOAD NOW!


Book Synopsis Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34 by : Anthony W. Knapp

Download or read book Lie Groups, Lie Algebras, and Cohomology. (MN-34), Volume 34 written by Anthony W. Knapp and published by Princeton University Press. This book was released on 2021-01-12 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book starts with the elementary theory of Lie groups of matrices and arrives at the definition, elementary properties, and first applications of cohomological induction, which is a recently discovered algebraic construction of group representations. Along the way it develops the computational techniques that are so important in handling Lie groups. The book is based on a one-semester course given at the State University of New York, Stony Brook in fall, 1986 to an audience having little or no background in Lie groups but interested in seeing connections among algebra, geometry, and Lie theory. These notes develop what is needed beyond a first graduate course in algebra in order to appreciate cohomological induction and to see its first consequences. Along the way one is able to study homological algebra with a significant application in mind; consequently one sees just what results in that subject are fundamental and what results are minor.

The Atiyah-Singer Index Theorem

Download The Atiyah-Singer Index Theorem PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540359214
Total Pages : 230 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis The Atiyah-Singer Index Theorem by : P. Shanahan

Download or read book The Atiyah-Singer Index Theorem written by P. Shanahan and published by Springer. This book was released on 2006-11-15 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Reviews on Infinite Groups

Download Reviews on Infinite Groups PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 536 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Reviews on Infinite Groups by : Gilbert Baumslag

Download or read book Reviews on Infinite Groups written by Gilbert Baumslag and published by . This book was released on 1974 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Vector Bundles - Vol 1

Download Vector Bundles - Vol 1 PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0080874207
Total Pages : 385 pages
Book Rating : 4.0/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Vector Bundles - Vol 1 by :

Download or read book Vector Bundles - Vol 1 written by and published by Academic Press. This book was released on 1983-02-18 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: Vector Bundles - Vol 1

Lectures On Algebraic Topology

Download Lectures On Algebraic Topology PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811231265
Total Pages : 405 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Lectures On Algebraic Topology by : Haynes R Miller

Download or read book Lectures On Algebraic Topology written by Haynes R Miller and published by World Scientific. This book was released on 2021-09-20 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic Topology and basic homotopy theory form a fundamental building block for much of modern mathematics. These lecture notes represent a culmination of many years of leading a two-semester course in this subject at MIT. The style is engaging and student-friendly, but precise. Every lecture is accompanied by exercises. It begins slowly in order to gather up students with a variety of backgrounds, but gains pace as the course progresses, and by the end the student has a command of all the basic techniques of classical homotopy theory.

A User's Guide to Spectral Sequences

Download A User's Guide to Spectral Sequences PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 0521567599
Total Pages : 579 pages
Book Rating : 4.5/5 (215 download)

DOWNLOAD NOW!


Book Synopsis A User's Guide to Spectral Sequences by : John McCleary

Download or read book A User's Guide to Spectral Sequences written by John McCleary and published by Cambridge University Press. This book was released on 2001 with total page 579 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spectral sequences are among the most elegant and powerful methods of computation in mathematics. This book describes some of the most important examples of spectral sequences and some of their most spectacular applications. The first part treats the algebraic foundations for this sort of homological algebra, starting from informal calculations. The heart of the text is an exposition of the classical examples from homotopy theory, with chapters on the Leray-Serre spectral sequence, the Eilenberg-Moore spectral sequence, the Adams spectral sequence, and, in this new edition, the Bockstein spectral sequence. The last part of the book treats applications throughout mathematics, including the theory of knots and links, algebraic geometry, differential geometry and algebra. This is an excellent reference for students and researchers in geometry, topology, and algebra.

Applications of Algebraic Topology

Download Applications of Algebraic Topology PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468493671
Total Pages : 190 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Applications of Algebraic Topology by : S. Lefschetz

Download or read book Applications of Algebraic Topology written by S. Lefschetz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is based, in part, upon lectures given in the Princeton School of Engineering and Applied Science. It presupposes mainly an elementary knowledge of linear algebra and of topology. In topology the limit is dimension two mainly in the latter chapters and questions of topological invariance are carefully avoided. From the technical viewpoint graphs is our only requirement. However, later, questions notably related to Kuratowski's classical theorem have demanded an easily provided treatment of 2-complexes and surfaces. January 1972 Solomon Lefschetz 4 INTRODUCTION The study of electrical networks rests upon preliminary theory of graphs. In the literature this theory has always been dealt with by special ad hoc methods. My purpose here is to show that actually this theory is nothing else than the first chapter of classical algebraic topology and may be very advantageously treated as such by the well known methods of that science. Part I of this volume covers the following ground: The first two chapters present, mainly in outline, the needed basic elements of linear algebra. In this part duality is dealt with somewhat more extensively. In Chapter III the merest elements of general topology are discussed. Graph theory proper is covered in Chapters IV and v, first structurally and then as algebra. Chapter VI discusses the applications to networks. In Chapters VII and VIII the elements of the theory of 2-dimensional complexes and surfaces are presented.