Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Review Of Some Approximation Operators For The Numerical Analysis Of Spectral Methods
Download Review Of Some Approximation Operators For The Numerical Analysis Of Spectral Methods full books in PDF, epub, and Kindle. Read online Review Of Some Approximation Operators For The Numerical Analysis Of Spectral Methods ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Numerical Analysis of Spectral Methods by : David Gottlieb
Download or read book Numerical Analysis of Spectral Methods written by David Gottlieb and published by SIAM. This book was released on 1977-01-01 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: A unified discussion of the formulation and analysis of special methods of mixed initial boundary-value problems. The focus is on the development of a new mathematical theory that explains why and how well spectral methods work. Included are interesting extensions of the classical numerical analysis.
Book Synopsis Spectral Approximation of Linear Operators by : Francoise Chatelin
Download or read book Spectral Approximation of Linear Operators written by Francoise Chatelin and published by SIAM. This book was released on 2011-05-26 with total page 482 pages. Available in PDF, EPUB and Kindle. Book excerpt: Originally published: New York: Academic Press, 1983.
Download or read book Spectral Methods written by Jie Shen and published by Springer Science & Business Media. This book was released on 2011-08-25 with total page 481 pages. Available in PDF, EPUB and Kindle. Book excerpt: Along with finite differences and finite elements, spectral methods are one of the three main methodologies for solving partial differential equations on computers. This book provides a detailed presentation of basic spectral algorithms, as well as a systematical presentation of basic convergence theory and error analysis for spectral methods. Readers of this book will be exposed to a unified framework for designing and analyzing spectral algorithms for a variety of problems, including in particular high-order differential equations and problems in unbounded domains. The book contains a large number of figures which are designed to illustrate various concepts stressed in the book. A set of basic matlab codes has been made available online to help the readers to develop their own spectral codes for their specific applications.
Book Synopsis Spectral and High-order Methods with Applications by : Jie Shen
Download or read book Spectral and High-order Methods with Applications written by Jie Shen and published by . This book was released on 2006 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: 中国科学院科学出版基金资助出版。
Book Synopsis Numerical Methods for Stochastic Computations by : Dongbin Xiu
Download or read book Numerical Methods for Stochastic Computations written by Dongbin Xiu and published by Princeton University Press. This book was released on 2010-07-01 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: The@ first graduate-level textbook to focus on fundamental aspects of numerical methods for stochastic computations, this book describes the class of numerical methods based on generalized polynomial chaos (gPC). These fast, efficient, and accurate methods are an extension of the classical spectral methods of high-dimensional random spaces. Designed to simulate complex systems subject to random inputs, these methods are widely used in many areas of computer science and engineering. The book introduces polynomial approximation theory and probability theory; describes the basic theory of gPC methods through numerical examples and rigorous development; details the procedure for converting stochastic equations into deterministic ones; using both the Galerkin and collocation approaches; and discusses the distinct differences and challenges arising from high-dimensional problems. The last section is devoted to the application of gPC methods to critical areas such as inverse problems and data assimilation. Ideal for use by graduate students and researchers both in the classroom and for self-study, Numerical Methods for Stochastic Computations provides the required tools for in-depth research related to stochastic computations. The first graduate-level textbook to focus on the fundamentals of numerical methods for stochastic computations Ideal introduction for graduate courses or self-study Fast, efficient, and accurate numerical methods Polynomial approximation theory and probability theory included Basic gPC methods illustrated through examples
Book Synopsis Spectral Methods in MATLAB by : Lloyd N. Trefethen
Download or read book Spectral Methods in MATLAB written by Lloyd N. Trefethen and published by SIAM. This book was released on 2000-07-01 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Computing -- Numerical Analysis.
Book Synopsis Publications du Laboratoire d'analyse numérique by :
Download or read book Publications du Laboratoire d'analyse numérique written by and published by . This book was released on 2000 with total page 558 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Chebyshev and Fourier Spectral Methods by : John P. Boyd
Download or read book Chebyshev and Fourier Spectral Methods written by John P. Boyd and published by Courier Corporation. This book was released on 2001-12-03 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
Book Synopsis Chebyshev and Fourier Spectral Methods by : John P. Boyd
Download or read book Chebyshev and Fourier Spectral Methods written by John P. Boyd and published by Courier Corporation. This book was released on 2013-06-05 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.
Book Synopsis Curve and Surface Fitting by : Albert Cohen
Download or read book Curve and Surface Fitting written by Albert Cohen and published by . This book was released on 2000 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Two new volumes of carefully refereed and edited papers on the most current developments in the theory and applications of curves and surfaces. These two volumes contain a selection of papers presented at the Saint-Malo Conference on Approximation Theory in July 1999. Each contains several invited survey papers written by experts in the field, along with contributed research papers. They will be of great interest to mathematicians, engineers, and computer scientists working in the fields of Approximation Theory, Computer-Aided Geometric Design (CAGD), Computer Graphics, Numerical Analysis, CAD/CAM, and application areas. Curve and Surface Design includes the following topics: B-bases canal surfaces conics curvature discrete fairing free form surfaces G2-splines highlight lines involute curves multisided patches NURBs and NURPs offsets ray tracing ruled surfaces sculptured surfaces segmentation methods shape preservation texture voronoi diagrams
Download or read book Applied Mechanics Reviews written by and published by . This book was released on 1974 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Finite Difference Methods for Ordinary and Partial Differential Equations by : Randall J. LeVeque
Download or read book Finite Difference Methods for Ordinary and Partial Differential Equations written by Randall J. LeVeque and published by SIAM. This book was released on 2007-01-01 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.
Book Synopsis Spectral Methods in MATLAB by : Lloyd N. Trefethen
Download or read book Spectral Methods in MATLAB written by Lloyd N. Trefethen and published by SIAM. This book was released on 2000-01-01 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the only book on spectral methods built around MATLAB programs. Along with finite differences and finite elements, spectral methods are one of the three main technologies for solving partial differential equations on computers. Since spectral methods involve significant linear algebra and graphics they are very suitable for the high level programming of MATLAB. This hands-on introduction is built around forty short and powerful MATLAB programs, which the reader can download from the World Wide Web.
Book Synopsis Reviews in Numerical Analysis, 1980-86 by :
Download or read book Reviews in Numerical Analysis, 1980-86 written by and published by . This book was released on 1987 with total page 710 pages. Available in PDF, EPUB and Kindle. Book excerpt: These five volumes bring together a wealth of bibliographic information in the area of numerical analysis. Containing over 17,600 reviews of articles, books, and conference proceedings, these volumes represent all the numerical analysis entries that appeared in Mathematical Reviews between 1980 and 1986. Author and key indexes appear at the end of volume 5.
Book Synopsis 3+1 Formalism in General Relativity by : Éric Gourgoulhon
Download or read book 3+1 Formalism in General Relativity written by Éric Gourgoulhon and published by Springer. This book was released on 2012-02-27 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This graduate-level, course-based text is devoted to the 3+1 formalism of general relativity, which also constitutes the theoretical foundations of numerical relativity. The book starts by establishing the mathematical background (differential geometry, hypersurfaces embedded in space-time, foliation of space-time by a family of space-like hypersurfaces), and then turns to the 3+1 decomposition of the Einstein equations, giving rise to the Cauchy problem with constraints, which constitutes the core of 3+1 formalism. The ADM Hamiltonian formulation of general relativity is also introduced at this stage. Finally, the decomposition of the matter and electromagnetic field equations is presented, focusing on the astrophysically relevant cases of a perfect fluid and a perfect conductor (ideal magnetohydrodynamics). The second part of the book introduces more advanced topics: the conformal transformation of the 3-metric on each hypersurface and the corresponding rewriting of the 3+1 Einstein equations, the Isenberg-Wilson-Mathews approximation to general relativity, global quantities associated with asymptotic flatness (ADM mass, linear and angular momentum) and with symmetries (Komar mass and angular momentum). In the last part, the initial data problem is studied, the choice of spacetime coordinates within the 3+1 framework is discussed and various schemes for the time integration of the 3+1 Einstein equations are reviewed. The prerequisites are those of a basic general relativity course with calculations and derivations presented in detail, making this text complete and self-contained. Numerical techniques are not covered in this book.
Book Synopsis Numerical Methods for Special Functions by : Amparo Gil
Download or read book Numerical Methods for Special Functions written by Amparo Gil and published by SIAM. This book was released on 2007-01-01 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Special functions arise in many problems of pure and applied mathematics, mathematical statistics, physics, and engineering. This book provides an up-to-date overview of numerical methods for computing special functions and discusses when to use these methods depending on the function and the range of parameters. Not only are standard and simple parameter domains considered, but methods valid for large and complex parameters are described as well. The first part of the book (basic methods) covers convergent and divergent series, Chebyshev expansions, numerical quadrature, and recurrence relations. Its focus is on the computation of special functions; however, it is suitable for general numerical courses. Pseudoalgorithms are given to help students write their own algorithms. In addition to these basic tools, the authors discuss other useful and efficient methods, such as methods for computing zeros of special functions, uniform asymptotic expansions, Padé approximations, and sequence transformations. The book also provides specific algorithms for computing several special functions (like Airy functions and parabolic cylinder functions, among others).
Book Synopsis Numerical Analysis of Partial Differential Equations by : S. H, Lui
Download or read book Numerical Analysis of Partial Differential Equations written by S. H, Lui and published by John Wiley & Sons. This book was released on 2012-01-10 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis of PDEs. The book presents the three main discretization methods of elliptic PDEs: finite difference, finite elements, and spectral methods. Each topic has its own devoted chapters and is discussed alongside additional key topics, including: The mathematical theory of elliptic PDEs Numerical linear algebra Time-dependent PDEs Multigrid and domain decomposition PDEs posed on infinite domains The book concludes with a discussion of the methods for nonlinear problems, such as Newton's method, and addresses the importance of hands-on work to facilitate learning. Each chapter concludes with a set of exercises, including theoretical and programming problems, that allows readers to test their understanding of the presented theories and techniques. In addition, the book discusses important nonlinear problems in many fields of science and engineering, providing information as to how they can serve as computing projects across various disciplines. Requiring only a preliminary understanding of analysis, Numerical Analysis of Partial Differential Equations is suitable for courses on numerical PDEs at the upper-undergraduate and graduate levels. The book is also appropriate for students majoring in the mathematical sciences and engineering.