REGRESSION, SEGMENTATION, CLUSTERING, AND PREDICTION PROJECTS WITH PYTHON

Download REGRESSION, SEGMENTATION, CLUSTERING, AND PREDICTION PROJECTS WITH PYTHON PDF Online Free

Author :
Publisher : BALIGE PUBLISHING
ISBN 13 :
Total Pages : 623 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis REGRESSION, SEGMENTATION, CLUSTERING, AND PREDICTION PROJECTS WITH PYTHON by : Vivian Siahaan

Download or read book REGRESSION, SEGMENTATION, CLUSTERING, AND PREDICTION PROJECTS WITH PYTHON written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2022-02-25 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt: PROJECT 1: TIME-SERIES WEATHER: FORECASTING AND PREDICTION WITH PYTHON Weather data are described and quantified by the variables of Earth's atmosphere: temperature, air pressure, humidity, and the variations and interactions of these variables, and how they change over time. Different spatial scales are used to describe and predict weather on local, regional, and global levels. The dataset used in this project contains weather data for New Delhi, India. This data was taken out from wunderground. It contains various features such as temperature, pressure, humidity, rain, precipitation, etc. The main target is to develop a prediction model accurate enough for forecasting temperature and predicting target variable (condition). Time-series weather forecasting will be done using ARIMA models. The machine learning models used in this project to predict target variable (condition) are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: HOUSE PRICE: ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON The dataset used in this project is taken from the second chapter of Aurélien Géron's recent book 'Hands-On Machine learning with Scikit-Learn and TensorFlow'. It serves as an excellent introduction to implementing machine learning algorithms because it requires rudimentary data cleaning, has an easily understandable list of variables and sits at an optimal size between being to toyish and too cumbersome. The data contains information from the 1990 California census. Although it may not help you with predicting current housing prices like the Zillow Zestimate dataset, it does provide an accessible introductory dataset for teaching people about the basics of machine learning. The data pertains to the houses found in a given California district and some summary stats about them based on the 1990 census data. Be warned the data aren't cleaned so there are some preprocessing steps required! The columns are as follows: longitude, latitude, housing_median_age, total_rooms, total_bedrooms, population, households, median_income, median_house_value, and ocean_proximity. The machine learning models used in this project used to perform regression on median_house_value and to predict it as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM classifier, Gradient Boosting, XGB classifier, and MLP classifier. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: CUSTOMER PERSONALITY ANALYSIS AND PREDICTION USING MACHINE LEARNING WITH PYTHON Customer Personality Analysis is a detailed analysis of a company’s ideal customers. It helps a business to better understand its customers and makes it easier for them to modify products according to the specific needs, behaviors and concerns of different types of customers. Customer personality analysis helps a business to modify its product based on its target customers from different types of customer segments. For example, instead of spending money to market a new product to every customer in the company’s database, a company can analyze which customer segment is most likely to buy the product and then market the product only on that particular segment. Following are the features in the dataset: ID = Customer's unique identifier; Year_Birth = Customer's birth year; Education = Customer's education level; Marital_Status = Customer's marital status; Income = Customer's yearly household income; Kidhome = Number of children in customer's household; Teenhome = Number of teenagers in customer's household; Dt_Customer = Date of customer's enrollment with the company; Recency = Number of days since customer's last purchase; MntWines = Amount spent on wine in the last 2 years; MntFruits = Amount spent on fruits in the last 2 years; MntMeatProducts = Amount spent on meat in the last 2 years; MntFishProducts = Amount spent on fish in the last 2 years; MntSweetProducts = Amount spent on sweets in the last 2 years; MntGoldProds = Amount spent on gold in the last 2 years; NumDealsPurchases = Number of purchases made with a discount; NumWebPurchases = Number of purchases made through the company's web site; NumCatalogPurchases = Number of purchases made using a catalogue; NumStorePurchases = Number of purchases made directly in stores; NumWebVisitsMonth = Number of visits to company's web site in the last month; AcceptedCmp3 = 1 if customer accepted the offer in the 3rd campaign, 0 otherwise; AcceptedCmp4 = 1 if customer accepted the offer in the 4th campaign, 0 otherwise; AcceptedCmp5 = 1 if customer accepted the offer in the 5th campaign, 0 otherwise; AcceptedCmp1 = 1 if customer accepted the offer in the 1st campaign, 0 otherwise; AcceptedCmp2 = 1 if customer accepted the offer in the 2nd campaign, 0 otherwise; Response = 1 if customer accepted the offer in the last campaign, 0 otherwise; and Complain = 1 if customer complained in the last 2 years, 0 otherwise. The target in this project is to perform clustering and predicting to summarize customer segments. In this project, you will perform clustering using KMeans to get 4 clusters. The machine learning models used in this project to perform regression on total number of purchase and to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 4: CUSTOMER SEGMENTATION, CLUSTERING, AND PREDICTION WITH PYTHON In this project, you will develop a customer segmentation, clustering, and prediction to define marketing strategy. The sample dataset summarizes the usage behavior of about 9000 active credit card holders during the last 6 months. The file is at a customer level with 18 behavioral variables. Following is the Data Dictionary for Credit Card dataset: CUSTID: Identification of Credit Card holder (Categorical); BALANCE: Balance amount left in their account to make purchases; BALANCEFREQUENCY: How frequently the Balance is updated, score between 0 and 1 (1 = frequently updated, 0 = not frequently updated); PURCHASES: Amount of purchases made from account; ONEOFFPURCHASES: Maximum purchase amount done in one-go; INSTALLMENTSPURCHASES: Amount of purchase done in installment; CASHADVANCE: Cash in advance given by the user; PURCHASESFREQUENCY: How frequently the Purchases are being made, score between 0 and 1 (1 = frequently purchased, 0 = not frequently purchased); ONEOFFPURCHASESFREQUENCY: How frequently Purchases are happening in one-go (1 = frequently purchased, 0 = not frequently purchased); PURCHASESINSTALLMENTSFREQUENCY: How frequently purchases in installments are being done (1 = frequently done, 0 = not frequently done); CASHADVANCEFREQUENCY: How frequently the cash in advance being paid; CASHADVANCETRX: Number of Transactions made with "Cash in Advanced"; PURCHASESTRX: Number of purchase transactions made; CREDITLIMIT: Limit of Credit Card for user; PAYMENTS: Amount of Payment done by user; MINIMUM_PAYMENTS: Minimum amount of payments made by user; PRCFULLPAYMENT: Percent of full payment paid by user; and TENURE: Tenure of credit card service for user. In this project, you will perform clustering using KMeans to get 5 clusters. The machine learning models used in this project to perform regression on total number of purchase and to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.

DATA SCIENCE FOR SALES ANALYSIS, FORECASTING, CLUSTERING, AND PREDICTION WITH PYTHON

Download DATA SCIENCE FOR SALES ANALYSIS, FORECASTING, CLUSTERING, AND PREDICTION WITH PYTHON PDF Online Free

Author :
Publisher : BALIGE PUBLISHING
ISBN 13 :
Total Pages : 300 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis DATA SCIENCE FOR SALES ANALYSIS, FORECASTING, CLUSTERING, AND PREDICTION WITH PYTHON by : Vivian Siahaan

Download or read book DATA SCIENCE FOR SALES ANALYSIS, FORECASTING, CLUSTERING, AND PREDICTION WITH PYTHON written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-07-28 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this comprehensive data science project focusing on sales analysis, forecasting, clustering, and prediction with Python, we embarked on an enlightening journey of data exploration and analysis. Our primary objective was to gain valuable insights from the dataset and leverage the power of machine learning to make accurate predictions and informed decisions. We began by meticulously exploring the dataset, examining its structure, and identifying any missing or inconsistent data. By visualizing features' distributions and conducting statistical analyses, we gained a better understanding of the data's characteristics and potential challenges. The first key aspect of the project was weekly sales forecasting. We employed various machine learning regression models, including Linear Regression, Support Vector Regression, Random Forest Regression, Decision Tree Regression, Gradient Boosting Regression, Extreme Gradient Boosting Regression, Light Gradient Boosting Regression, KNN Regression, Catboost Regression, Naïve Bayes Regression, and Multi-Layer Perceptron Regression. These models enabled us to predict weekly sales based on relevant features, allowing us to uncover patterns and relationships between different factors and sales performance. To optimize the performance of our regression models, we employed grid search with cross-validation. This technique systematically explored hyperparameter combinations to find the optimal configuration, maximizing the models' accuracy and predictive capabilities. Moving on to data segmentation, we adopted the widely-used K-means clustering technique, an unsupervised learning method. The goal was to divide data into distinct segments. By determining the optimal number of clusters through grid search with cross-validation, we ensured that the clustering accurately captured the underlying patterns in the data. The next phase of the project focused on predicting the cluster of new customers using machine learning classifiers. We employed powerful classifiers such as Logistic Regression, K-Nearest Neighbors, Support Vector, Decision Trees, Random Forests, Gradient Boosting, Adaboost, Extreme Gradient Boosting, Light Gradient Boosting, and Multi-Layer Perceptron (MLP) to make accurate predictions. Grid search with cross-validation was again applied to fine-tune the classifiers' hyperparameters, enhancing their performance. Throughout the project, we emphasized the significance of feature scaling techniques, such as Min-Max scaling and Standardization. These preprocessing steps played a crucial role in ensuring that all features were on the same scale, contributing equally during model training, and improving the models' interpretability. Evaluation of our models was conducted using various metrics. For regression tasks, we utilized mean squared error, while classification tasks employed accuracy, precision, recall, and F1-score. The use of cross-validation helped validate the models' robustness, providing comprehensive assessments of their effectiveness. Visualization played a vital role in presenting our findings effectively. Utilizing libraries such as Matplotlib and Seaborn, we created informative visualizations that facilitated the communication of complex insights to stakeholders and decision-makers. Throughout the project, we followed an iterative approach, refining our strategies through data preprocessing, model training, and hyperparameter tuning. The grid search technique proved to be an invaluable tool in identifying the best parameter combinations, resulting in more accurate predictions and meaningful customer segmentation. In conclusion, this data science project demonstrated the power of machine learning techniques in sales analysis, forecasting, and customer segmentation. The insights and recommendations generated from the models can provide valuable guidance for businesses seeking to optimize sales strategies, target marketing efforts, and make data-driven decisions to achieve growth and success. The project showcases the importance of leveraging advanced analytical methods to unlock hidden patterns and unleash the full potential of data for business success.

CUSTOMER SEGMENTATION, CLUSTERING, AND PREDICTION WITH PYTHON

Download CUSTOMER SEGMENTATION, CLUSTERING, AND PREDICTION WITH PYTHON PDF Online Free

Author :
Publisher : BALIGE PUBLISHING
ISBN 13 :
Total Pages : 355 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis CUSTOMER SEGMENTATION, CLUSTERING, AND PREDICTION WITH PYTHON by : Vivian Siahaan

Download or read book CUSTOMER SEGMENTATION, CLUSTERING, AND PREDICTION WITH PYTHON written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-07-04 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, we conducted a customer segmentation, clustering, and prediction analysis using Python. We began by exploring the customer dataset, examining its structure and contents. The dataset contained various features such as demographic, behavioral, and transactional attributes. To ensure accurate analysis and modeling, we performed data preprocessing steps. This involved handling missing values, removing duplicates, and addressing any data quality issues that could impact the results. We also split the dataset into features (X) and the target variable (y) for prediction tasks. Since the dataset had features with different scales and units, we applied feature scaling techniques. This process standardized or normalized the data, ensuring that all features contributed equally to the analysis. We then performed regression analysis on the "PURCHASESTRX" feature, which represents the number of purchase transactions made by customers. To begin the regression analysis, we first prepared the dataset by handling missing values, removing duplicates, and addressing any data quality issues. We then split the dataset into features (X) and the target variable (y), with "PURCHASESTRX" being the target variable for regression. We selected appropriate regression algorithms for modeling, such as Linear Regression, Random Forest, Naïve Bayes, KNN, Decision Trees, Support Vector, Ada Boost, Catboost, Gradient Boosting, Extreme Gradient Boosting, Light Gradient Boosting, and Multi-Layer Perceptron regressors. After training and evaluation, we analyzed the performance of the regression models. We examined the metrics to determine how accurately the models predicted the number of purchase transactions made by customers. A lower MAE and RMSE indicated better predictive performance, while a higher R2 score indicated a higher proportion of variance explained by the model. Based on the analysis, we provided insights and recommendations. These could include identifying factors that significantly influence the number of purchase transactions, understanding customer behavior patterns, or suggesting strategies to increase customer engagement and transaction frequency. Next, we focused on customer segmentation using unsupervised machine learning techniques. K-means clustering algorithm was employed to group customers into distinct segments. The optimal number of clusters was determined using KElbowVisualizer. To gain insights into the clusters, we visualized them 3D space. Dimensionality PCA reduction technique wasused to plot the clusters on scatter plots or 3D plots, enabling us to understand their separations and distributions. We then interpreted the segments by analyzing their characteristics. This involved identifying the unique features that differentiated one segment from another. We also pinpointed the key attributes or behaviors that contributed most to the formation of each segment. In addition to segmentation, we performed clusters prediction tasks using supervised machine learning techniques. Algorithms such as Logistic Regression, Random Forest, Naïve Bayes, KNN, Decision Trees, Support Vector, Ada Boost, Gradient Boosting, Extreme Gradient Boosting, Light Gradient Boosting, and Multi-Layer Perceptron Classifiers were chosen based on the specific problem. The models were trained on the training dataset and evaluated using the test dataset. To evaluate the performance of the prediction models, various metrics such as accuracy, precision, recall, F1-score, and ROC-AUC were utilized for classification tasks. Summarizing the findings and insights obtained from the analysis, we provided recommendations and actionable insights. These insights could be used for marketing strategies, product improvement, or customer retention initiatives.

Python Programming Projects with GUI for Beginners

Download Python Programming Projects with GUI for Beginners PDF Online Free

Author :
Publisher : Vedant Bahel
ISBN 13 :
Total Pages : 80 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Python Programming Projects with GUI for Beginners by : Vedant Bahel

Download or read book Python Programming Projects with GUI for Beginners written by Vedant Bahel and published by Vedant Bahel. This book was released on 2021-02-26 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed as a guide to cater the requirement of beginner level students willing to deploy Python projects. The objective of this book is to make students better understand about the use cases of Python fundamentals. The book majorly covers projects based on the following Python fundamentals: · Python variables · Python Control statements · Python functions · Python libraries · Python GUI for application development · Data management · Machine Learning Overall, the book assumes that the readers have prior knowledge of Python Programming Language.

Python Programming Projects & Practical for CBSE Class XI & XII

Download Python Programming Projects & Practical for CBSE Class XI & XII PDF Online Free

Author :
Publisher : Vedant Bahel
ISBN 13 :
Total Pages : 100 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis Python Programming Projects & Practical for CBSE Class XI & XII by : Vedant Bahel

Download or read book Python Programming Projects & Practical for CBSE Class XI & XII written by Vedant Bahel and published by Vedant Bahel. This book was released on 2021-02-26 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed as a guide to cater the requirement of beginner level high school (Class XI & XII CBSE) and university students willing to deploy Python projects. The objective of this book is to make students better understand about the use cases of Python fundamentals. Projects are also associated with development of Graphical User Interface for the application. The book majorly covers projects based on the following Python fundamentals: •Python variables •Python Control statements •Python functions •Python libraries •Python GUI for application development •Data management •Machine Learning This book also has solutions to all the python practical’s as per the latest CBSE syllabus for class XI and class XII.

THREE DATA SCIENCE PROJECTS FOR RFM ANALYSIS, K-MEANS CLUSTERING, AND MACHINE LEARNING BASED PREDICTION WITH PYTHON GUI

Download THREE DATA SCIENCE PROJECTS FOR RFM ANALYSIS, K-MEANS CLUSTERING, AND MACHINE LEARNING BASED PREDICTION WITH PYTHON GUI PDF Online Free

Author :
Publisher : BALIGE PUBLISHING
ISBN 13 :
Total Pages : 627 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis THREE DATA SCIENCE PROJECTS FOR RFM ANALYSIS, K-MEANS CLUSTERING, AND MACHINE LEARNING BASED PREDICTION WITH PYTHON GUI by : Vivian Siahaan

Download or read book THREE DATA SCIENCE PROJECTS FOR RFM ANALYSIS, K-MEANS CLUSTERING, AND MACHINE LEARNING BASED PREDICTION WITH PYTHON GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2022-05-11 with total page 627 pages. Available in PDF, EPUB and Kindle. Book excerpt: PROJECT 1: RFM ANALYSIS AND K-MEANS CLUSTERING: A CASE STUDY ANALYSIS, CLUSTERING, AND PREDICTION ON RETAIL STORE TRANSACTIONS WITH PYTHON GUI The dataset used in this project is the detailed data on sales of consumer goods obtained by ‘scanning’ the bar codes for individual products at electronic points of sale in a retail store. The dataset provides detailed information about quantities, characteristics and values of goods sold as well as their prices. The anonymized dataset includes 64.682 transactions of 5.242 SKU's sold to 22.625 customers during one year. Dataset Attributes are as follows: Date of Sales Transaction, Customer ID, Transaction ID, SKU Category ID, SKU ID, Quantity Sold, and Sales Amount (Unit price times quantity. For unit price, please divide Sales Amount by Quantity). This dataset can be analyzed with RFM analysis and can be clustered using K-Means algorithm. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 2: DATA SCIENCE FOR GROCERIES MARKET ANALYSIS, CLUSTERING, AND PREDICTION WITH PYTHON GUI RFM analysis used in this project can be used as a marketing technique used to quantitatively rank and group customers based on the recency, frequency and monetary total of their recent transactions to identify the best customers and perform targeted marketing campaigns. The idea is to segment customers based on when their last purchase was, how often they've purchased in the past, and how much they've spent overall. Clustering, in this case K-Means algorithm, used in this project can be used to place similar customers into mutually exclusive groups; these groups are known as “segments” while the act of grouping is known as segmentation. Segmentation allows businesses to identify the different types and preferences of customers/markets they serve. This is crucial information to have to develop highly effective marketing, product, and business strategies. The dataset in this project has 38765 rows of the purchase orders of people from the grocery stores. These orders can be analyzed with RFM analysis and can be clustered using K-Means algorithm. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy. PROJECT 3: ONLINE RETAIL CLUSTERING AND PREDICTION USING MACHINE LEARNING WITH PYTHON GUI The dataset used in this project is a transnational dataset which contains all the transactions occurring between 01/12/2010 and 09/12/2011 for a UK-based and registered non-store online retail. The company mainly sells unique all-occasion gifts. Many customers of the company are wholesalers. You will be using the online retail transnational dataset to build a RFM clustering and choose the best set of customers which the company should target. In this project, you will perform Cohort analysis and RFM analysis. You will also perform clustering using K-Means to get 5 clusters. The machine learning models used in this project to predict clusters as target variable are K-Nearest Neighbor, Random Forest, Naive Bayes, Logistic Regression, Decision Tree, Support Vector Machine, LGBM, Gradient Boosting, XGB, and MLP. Finally, you will plot boundary decision, distribution of features, feature importance, cross validation score, and predicted values versus true values, confusion matrix, learning curve, performance of the model, scalability of the model, training loss, and training accuracy.

Deep Learning with Python, Second Edition

Download Deep Learning with Python, Second Edition PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1638350094
Total Pages : 502 pages
Book Rating : 4.6/5 (383 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning with Python, Second Edition by : Francois Chollet

Download or read book Deep Learning with Python, Second Edition written by Francois Chollet and published by Simon and Schuster. This book was released on 2021-12-07 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlock the groundbreaking advances of deep learning with this extensively revised edition of the bestselling original. Learn directly from the creator of Keras and master practical Python deep learning techniques that are easy to apply in the real world. In Deep Learning with Python, Second Edition you will learn: Deep learning from first principles Image classification & image segmentation Timeseries forecasting Text classification and machine translation Text generation, neural style transfer, and image generation Deep Learning with Python has taught thousands of readers how to put the full capabilities of deep learning into action. This extensively revised second edition introduces deep learning using Python and Keras, and is loaded with insights for both novice and experienced ML practitioners. You’ll learn practical techniques that are easy to apply in the real world, and important theory for perfecting neural networks. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the technology Recent innovations in deep learning unlock exciting new software capabilities like automated language translation, image recognition, and more. Deep learning is becoming essential knowledge for every software developer, and modern tools like Keras and TensorFlow put it within your reach, even if you have no background in mathematics or data science. About the book Deep Learning with Python, Second Edition introduces the field of deep learning using Python and the powerful Keras library. In this new edition, Keras creator François Chollet offers insights for both novice and experienced machine learning practitioners. As you move through this book, you’ll build your understanding through intuitive explanations, crisp illustrations, and clear examples. You’ll pick up the skills to start developing deep-learning applications. What's inside Deep learning from first principles Image classification and image segmentation Time series forecasting Text classification and machine translation Text generation, neural style transfer, and image generation About the reader For readers with intermediate Python skills. No previous experience with Keras, TensorFlow, or machine learning is required. About the author François Chollet is a software engineer at Google and creator of the Keras deep-learning library. Table of Contents 1 What is deep learning? 2 The mathematical building blocks of neural networks 3 Introduction to Keras and TensorFlow 4 Getting started with neural networks: Classification and regression 5 Fundamentals of machine learning 6 The universal workflow of machine learning 7 Working with Keras: A deep dive 8 Introduction to deep learning for computer vision 9 Advanced deep learning for computer vision 10 Deep learning for timeseries 11 Deep learning for text 12 Generative deep learning 13 Best practices for the real world 14 Conclusions

RFM ANALYSIS AND K-MEANS CLUSTERING: A CASE STUDY ANALYSIS, CLUSTERING, AND PREDICTION ON RETAIL STORE TRANSACTIONS WITH PYTHON GUI

Download RFM ANALYSIS AND K-MEANS CLUSTERING: A CASE STUDY ANALYSIS, CLUSTERING, AND PREDICTION ON RETAIL STORE TRANSACTIONS WITH PYTHON GUI PDF Online Free

Author :
Publisher : BALIGE PUBLISHING
ISBN 13 :
Total Pages : 390 pages
Book Rating : 4./5 ( download)

DOWNLOAD NOW!


Book Synopsis RFM ANALYSIS AND K-MEANS CLUSTERING: A CASE STUDY ANALYSIS, CLUSTERING, AND PREDICTION ON RETAIL STORE TRANSACTIONS WITH PYTHON GUI by : Vivian Siahaan

Download or read book RFM ANALYSIS AND K-MEANS CLUSTERING: A CASE STUDY ANALYSIS, CLUSTERING, AND PREDICTION ON RETAIL STORE TRANSACTIONS WITH PYTHON GUI written by Vivian Siahaan and published by BALIGE PUBLISHING. This book was released on 2023-07-07 with total page 390 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this case study, we will explore RFM (Recency, Frequency, Monetary) analysis and K-means clustering techniques for retail store transaction data. RFM analysis is a powerful method for understanding customer behavior by segmenting them based on their transaction history. K-means clustering is a popular unsupervised machine learning algorithm used for grouping similar data points. We will leverage these techniques to gain insights, perform customer segmentation, and make predictions on retail store transactions. The case study involves a retail store dataset that contains transaction records, including customer IDs, transaction dates, purchase amounts, and other relevant information. This dataset serves as the foundation for our RFM analysis and clustering. RFM analysis involves evaluating three key aspects of customer behavior: recency, frequency, and monetary value. Recency refers to the time since a customer's last transaction, frequency measures the number of transactions made by a customer, and monetary value represents the total amount spent by a customer. By analyzing these dimensions, we can segment customers into different groups based on their purchasing patterns. Before conducting RFM analysis, we need to preprocess and transform the raw transaction data. This includes cleaning the data, aggregating it at the customer level, and calculating the recency, frequency, and monetary metrics for each customer. These transformed RFM metrics will be used for segmentation and clustering. Using the RFM metrics, we can apply clustering algorithms such as K-means to group customers with similar behaviors together. K-means clustering aims to partition the data into a predefined number of clusters based on their feature similarities. By clustering customers, we can identify distinct groups with different purchasing behaviors and tailor marketing strategies accordingly. K-means is an iterative algorithm that assigns data points to clusters in a way that minimizes the within-cluster sum of squares. It starts by randomly initializing cluster centers and then iteratively updates them until convergence. The resulting clusters represent distinct customer segments based on their RFM metrics. To determine the optimal number of clusters for our K-means analysis, we can employ elbow method. This method help us identify the number of clusters that provide the best balance between intra-cluster similarity and inter-cluster dissimilarity. Once the K-means algorithm has assigned customers to clusters, we can analyze the characteristics of each cluster. This involves examining the RFM metrics and other relevant customer attributes within each cluster. By understanding the distinct behavior patterns of each cluster, we can tailor marketing strategies and make targeted business decisions. Visualizations play a crucial role in presenting the results of RFM analysis and K-means clustering. We can create various visual representations, such as scatter plots, bar charts, and heatmaps, to showcase the distribution of customers across clusters and the differences in RFM metrics between clusters. These visualizations provide intuitive insights into customer segmentation. The objective of this data science project is to analyze and predict customer behavior in the groceries market using Python and create a graphical user interface (GUI) using PyQt. The project encompasses various stages, starting from exploring the dataset and visualizing the distribution of features to RFM analysis, K-means clustering, predicting clusters with machine learning algorithms, and implementing a GUI for user interaction. Once we have the clusters, we can utilize machine learning algorithms to predict the cluster for new or unseen customers. We train various models, including logistic regression, support vector machines, decision trees, k-nearest neighbors, random forests, gradient boosting, naive Bayes, adaboost, XGBoost, and LightGBM, on the clustered data. These models learn the patterns and relationships between customer features and their assigned clusters, enabling us to predict the cluster for new customers accurately. To evaluate the performance of our models, we utilize metrics such as accuracy, precision, recall, and F1-score. These metrics allow us to measure the models' predictive capabilities and compare their performance across different algorithms and preprocessing techniques. By assessing the models' performance, we can select the most suitable model for cluster prediction in the groceries market analysis. In addition to the analysis and prediction components, this project aims to provide a user-friendly interface for interaction and visualization. To achieve this, we implement a GUI using PyQt, a Python library for creating desktop applications. The GUI allows users to input new customer data and predict the corresponding cluster based on the trained models. It provides visualizations of the analysis results, including cluster distributions, confusion matrices, and decision boundaries. The GUI allows users to select different machine learning models and preprocessing techniques through radio buttons or dropdown menus. This flexibility empowers users to explore and compare the performance of various models, enabling them to choose the most suitable approach for their specific needs. The GUI's interactive nature enhances the usability of the project and promotes effective decision-making based on the analysis results.

Clustering Algorithms

Download Clustering Algorithms PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 :
Total Pages : 374 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Clustering Algorithms by : John A. Hartigan

Download or read book Clustering Algorithms written by John A. Hartigan and published by John Wiley & Sons. This book was released on 1975 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shows how Galileo, Newton, and Einstein tried to explain gravity. Discusses the concept of microgravity and NASA's research on gravity and microgravity.

Knowledge is Power in Four Dimensions: Models to Forecast Future Paradigm

Download Knowledge is Power in Four Dimensions: Models to Forecast Future Paradigm PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0323951139
Total Pages : 1000 pages
Book Rating : 4.3/5 (239 download)

DOWNLOAD NOW!


Book Synopsis Knowledge is Power in Four Dimensions: Models to Forecast Future Paradigm by : Bahman Zohuri

Download or read book Knowledge is Power in Four Dimensions: Models to Forecast Future Paradigm written by Bahman Zohuri and published by Academic Press. This book was released on 2022-07-14 with total page 1000 pages. Available in PDF, EPUB and Kindle. Book excerpt: Knowledge is Power in Four Dimensions: Models to Forecast Future Paradigms, Forecasting Energy for Tomorrow's World with Mathematical Modeling and Python Programming Driven Artificial Intelligence delivers knowledge on key infrastructure topics in both AI technology and energy. Sections lay the groundwork for tomorrow's computing functionality, starting with how to build a Business Resilience System (BRS), data warehousing, data management, and fuzzy logic. Subsequent chapters dive into the impact of energy on economic development and the environment and mathematical modeling, including energy forecasting and engineering statistics. Energy examples are included for application and learning opportunities. A final section deliver the most advanced content on artificial intelligence with the integration of machine learning and deep learning as a tool to forecast and make energy predictions. The reference covers many introductory programming tools, such as Python, Scikit, TensorFlow and Kera. - Helps users gain fundamental knowledge in technology infrastructure, including AI, machine learning and fuzzy logic - Compartmentalizes data knowledge into near-term and long-term forecasting models, with examples involving both renewable and non-renewable energy outcomes - Advances climate resiliency and helps readers build a business resiliency system for assets

Data Science and Machine Learning

Download Data Science and Machine Learning PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000730778
Total Pages : 538 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Data Science and Machine Learning by : Dirk P. Kroese

Download or read book Data Science and Machine Learning written by Dirk P. Kroese and published by CRC Press. This book was released on 2019-11-20 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code

A Handbook of Mathematical Models with Python

Download A Handbook of Mathematical Models with Python PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1804617067
Total Pages : 144 pages
Book Rating : 4.8/5 (46 download)

DOWNLOAD NOW!


Book Synopsis A Handbook of Mathematical Models with Python by : Dr. Ranja Sarkar

Download or read book A Handbook of Mathematical Models with Python written by Dr. Ranja Sarkar and published by Packt Publishing Ltd. This book was released on 2023-08-30 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the art of mathematical modeling through practical examples, use cases, and machine learning techniques Key Features Gain a profound understanding of various mathematical models that can be integrated with machine learning Learn how to implement optimization algorithms to tune machine learning models Build optimal solutions for practical use cases Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionMathematical modeling is the art of transforming a business problem into a well-defined mathematical formulation. Its emphasis on interpretability is particularly crucial when deploying a model to support high-stake decisions in sensitive sectors like pharmaceuticals and healthcare. Through this book, you’ll gain a firm grasp of the foundational mathematics underpinning various machine learning algorithms. Equipped with this knowledge, you can modify algorithms to suit your business problem. Starting with the basic theory and concepts of mathematical modeling, you’ll explore an array of mathematical tools that will empower you to extract insights and understand the data better, which in turn will aid in making optimal, data-driven decisions. The book allows you to explore mathematical optimization and its wide range of applications, and concludes by highlighting the synergetic value derived from blending mathematical models with machine learning. Ultimately, you’ll be able to apply everything you’ve learned to choose the most fitting methodologies for the business problems you encounter.What you will learn Understand core concepts of mathematical models and their relevance in solving problems Explore various approaches to modeling and learning using Python Work with tested mathematical tools to gather meaningful insights Blend mathematical modeling with machine learning to find optimal solutions to business problems Optimize ML models built with business data, apply them to understand their impact on the business, and address critical questions Apply mathematical optimization for data-scarce problems where the objective and constraints are known Who this book is forIf you are a budding data scientist seeking to augment your journey with mathematics, this book is for you. Researchers and R&D scientists will also be able to harness the concepts covered to their full potential. To make the best use of this book, a background in linear algebra, differential equations, basics of statistics, data types, data structures, and numerical algorithms will be useful.

Computational Methods for 3D Genome Analysis

Download Computational Methods for 3D Genome Analysis PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 1071641360
Total Pages : 455 pages
Book Rating : 4.0/5 (716 download)

DOWNLOAD NOW!


Book Synopsis Computational Methods for 3D Genome Analysis by : Ryuichiro Nakato

Download or read book Computational Methods for 3D Genome Analysis written by Ryuichiro Nakato and published by Springer Nature. This book was released on with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Python Machine Learning

Download Python Machine Learning PDF Online Free

Author :
Publisher : Packt Publishing Ltd
ISBN 13 : 1783555149
Total Pages : 455 pages
Book Rating : 4.7/5 (835 download)

DOWNLOAD NOW!


Book Synopsis Python Machine Learning by : Sebastian Raschka

Download or read book Python Machine Learning written by Sebastian Raschka and published by Packt Publishing Ltd. This book was released on 2015-09-23 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.

Hands-On Unsupervised Learning Using Python

Download Hands-On Unsupervised Learning Using Python PDF Online Free

Author :
Publisher : "O'Reilly Media, Inc."
ISBN 13 : 1492035599
Total Pages : 310 pages
Book Rating : 4.4/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Hands-On Unsupervised Learning Using Python by : Ankur A. Patel

Download or read book Hands-On Unsupervised Learning Using Python written by Ankur A. Patel and published by "O'Reilly Media, Inc.". This book was released on 2019-02-21 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many industry experts consider unsupervised learning the next frontier in artificial intelligence, one that may hold the key to general artificial intelligence. Since the majority of the world's data is unlabeled, conventional supervised learning cannot be applied. Unsupervised learning, on the other hand, can be applied to unlabeled datasets to discover meaningful patterns buried deep in the data, patterns that may be near impossible for humans to uncover. Author Ankur Patel shows you how to apply unsupervised learning using two simple, production-ready Python frameworks: Scikit-learn and TensorFlow using Keras. With code and hands-on examples, data scientists will identify difficult-to-find patterns in data and gain deeper business insight, detect anomalies, perform automatic feature engineering and selection, and generate synthetic datasets. All you need is programming and some machine learning experience to get started. Compare the strengths and weaknesses of the different machine learning approaches: supervised, unsupervised, and reinforcement learning Set up and manage machine learning projects end-to-end Build an anomaly detection system to catch credit card fraud Clusters users into distinct and homogeneous groups Perform semisupervised learning Develop movie recommender systems using restricted Boltzmann machines Generate synthetic images using generative adversarial networks

Marketing Analytics

Download Marketing Analytics PDF Online Free

Author :
Publisher : University of Virginia Press
ISBN 13 : 081394516X
Total Pages : 278 pages
Book Rating : 4.8/5 (139 download)

DOWNLOAD NOW!


Book Synopsis Marketing Analytics by : Rajkumar Venkatesan

Download or read book Marketing Analytics written by Rajkumar Venkatesan and published by University of Virginia Press. This book was released on 2021-01-13 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors of the pioneering Cutting-Edge Marketing Analytics return to the vital conversation of leveraging big data with Marketing Analytics: Essential Tools for Data-Driven Decisions, which updates and expands on the earlier book as we enter the 2020s. As they illustrate, big data analytics is the engine that drives marketing, providing a forward-looking, predictive perspective for marketing decision-making. The book presents actual cases and data, giving readers invaluable real-world instruction. The cases show how to identify relevant data, choose the best analytics technique, and investigate the link between marketing plans and customer behavior. These actual scenarios shed light on the most pressing marketing questions, such as setting the optimal price for one’s product or designing effective digital marketing campaigns. Big data is currently the most powerful resource to the marketing professional, and this book illustrates how to fully harness that power to effectively maximize marketing efforts.

Python For Data Analysis

Download Python For Data Analysis PDF Online Free

Author :
Publisher : RK Publication
ISBN 13 : 8197781109
Total Pages : 314 pages
Book Rating : 4.1/5 (977 download)

DOWNLOAD NOW!


Book Synopsis Python For Data Analysis by : Dr.Vidya Santosh Dhamdhere

Download or read book Python For Data Analysis written by Dr.Vidya Santosh Dhamdhere and published by RK Publication. This book was released on 2024-07-25 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python for Data Analysis the essential tools and techniques for data manipulation, cleaning, and analysis in Python. It emphasizes the use of libraries like pandas, NumPy, and Matplotlib to efficiently handle and visualize data. Ideal for analysts and aspiring data scientists, the book provides practical insights, examples, and workflows for handling real-world datasets. Whether for beginners or experienced professionals, it delivers a solid foundation in Python's data analysis ecosystem.