Discrete-Time Inverse Optimal Control for Nonlinear Systems

Download Discrete-Time Inverse Optimal Control for Nonlinear Systems PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1466580887
Total Pages : 268 pages
Book Rating : 4.4/5 (665 download)

DOWNLOAD NOW!


Book Synopsis Discrete-Time Inverse Optimal Control for Nonlinear Systems by : Edgar N. Sanchez

Download or read book Discrete-Time Inverse Optimal Control for Nonlinear Systems written by Edgar N. Sanchez and published by CRC Press. This book was released on 2017-12-19 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discrete-Time Inverse Optimal Control for Nonlinear Systems proposes a novel inverse optimal control scheme for stabilization and trajectory tracking of discrete-time nonlinear systems. This avoids the need to solve the associated Hamilton-Jacobi-Bellman equation and minimizes a cost functional, resulting in a more efficient controller. Design More Efficient Controllers for Stabilization and Trajectory Tracking of Discrete-Time Nonlinear Systems The book presents two approaches for controller synthesis: the first based on passivity theory and the second on a control Lyapunov function (CLF). The synthesized discrete-time optimal controller can be directly implemented in real-time systems. The book also proposes the use of recurrent neural networks to model discrete-time nonlinear systems. Combined with the inverse optimal control approach, such models constitute a powerful tool to deal with uncertainties such as unmodeled dynamics and disturbances. Learn from Simulations and an In-Depth Case Study The authors include a variety of simulations to illustrate the effectiveness of the synthesized controllers for stabilization and trajectory tracking of discrete-time nonlinear systems. An in-depth case study applies the control schemes to glycemic control in patients with type 1 diabetes mellitus, to calculate the adequate insulin delivery rate required to prevent hyperglycemia and hypoglycemia levels. The discrete-time optimal and robust control techniques proposed can be used in a range of industrial applications, from aerospace and energy to biomedical and electromechanical systems. Highlighting optimal and efficient control algorithms, this is a valuable resource for researchers, engineers, and students working in nonlinear system control.

Neural Network Control of Nonlinear Discrete-Time Systems

Download Neural Network Control of Nonlinear Discrete-Time Systems PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1420015451
Total Pages : 623 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Neural Network Control of Nonlinear Discrete-Time Systems by : Jagannathan Sarangapani

Download or read book Neural Network Control of Nonlinear Discrete-Time Systems written by Jagannathan Sarangapani and published by CRC Press. This book was released on 2018-10-03 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent systems are a hallmark of modern feedback control systems. But as these systems mature, we have come to expect higher levels of performance in speed and accuracy in the face of severe nonlinearities, disturbances, unforeseen dynamics, and unstructured uncertainties. Artificial neural networks offer a combination of adaptability, parallel processing, and learning capabilities that outperform other intelligent control methods in more complex systems. Borrowing from Biology Examining neurocontroller design in discrete-time for the first time, Neural Network Control of Nonlinear Discrete-Time Systems presents powerful modern control techniques based on the parallelism and adaptive capabilities of biological nervous systems. At every step, the author derives rigorous stability proofs and presents simulation examples to demonstrate the concepts. Progressive Development After an introduction to neural networks, dynamical systems, control of nonlinear systems, and feedback linearization, the book builds systematically from actuator nonlinearities and strict feedback in nonlinear systems to nonstrict feedback, system identification, model reference adaptive control, and novel optimal control using the Hamilton-Jacobi-Bellman formulation. The author concludes by developing a framework for implementing intelligent control in actual industrial systems using embedded hardware. Neural Network Control of Nonlinear Discrete-Time Systems fosters an understanding of neural network controllers and explains how to build them using detailed derivations, stability analysis, and computer simulations.

Neural Systems for Control

Download Neural Systems for Control PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080537391
Total Pages : 375 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Neural Systems for Control by : Omid Omidvar

Download or read book Neural Systems for Control written by Omid Omidvar and published by Elsevier. This book was released on 1997-02-24 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Control problems offer an industrially important application and a guide to understanding control systems for those working in Neural Networks. Neural Systems for Control represents the most up-to-date developments in the rapidly growing aplication area of neural networks and focuses on research in natural and artifical neural systems directly applicable to control or making use of modern control theory. The book covers such important new developments in control systems such as intelligent sensors in semiconductor wafer manufacturing; the relation between muscles and cerebral neurons in speech recognition; online compensation of reconfigurable control for spacecraft aircraft and other systems; applications to rolling mills, robotics and process control; the usage of past output data to identify nonlinear systems by neural networks; neural approximate optimal control; model-free nonlinear control; and neural control based on a regulation of physiological investigation/blood pressure control. All researchers and students dealing with control systems will find the fascinating Neural Systems for Control of immense interest and assistance. - Focuses on research in natural and artifical neural systems directly applicable to contol or making use of modern control theory - Represents the most up-to-date developments in this rapidly growing application area of neural networks - Takes a new and novel approach to system identification and synthesis

Self-Learning Optimal Control of Nonlinear Systems

Download Self-Learning Optimal Control of Nonlinear Systems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 981104080X
Total Pages : 242 pages
Book Rating : 4.8/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Self-Learning Optimal Control of Nonlinear Systems by : Qinglai Wei

Download or read book Self-Learning Optimal Control of Nonlinear Systems written by Qinglai Wei and published by Springer. This book was released on 2017-06-13 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a class of novel, self-learning, optimal control schemes based on adaptive dynamic programming techniques, which quantitatively obtain the optimal control schemes of the systems. It analyzes the properties identified by the programming methods, including the convergence of the iterative value functions and the stability of the system under iterative control laws, helping to guarantee the effectiveness of the methods developed. When the system model is known, self-learning optimal control is designed on the basis of the system model; when the system model is not known, adaptive dynamic programming is implemented according to the system data, effectively making the performance of the system converge to the optimum. With various real-world examples to complement and substantiate the mathematical analysis, the book is a valuable guide for engineers, researchers, and students in control science and engineering.

Nonlinear and Optimal Control Systems

Download Nonlinear and Optimal Control Systems PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 9780471042358
Total Pages : 584 pages
Book Rating : 4.0/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear and Optimal Control Systems by : Thomas L. Vincent

Download or read book Nonlinear and Optimal Control Systems written by Thomas L. Vincent and published by John Wiley & Sons. This book was released on 1997-06-23 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Designed for one-semester introductory senior-or graduate-level course, the authors provide the student with an introduction of analysis techniques used in the design of nonlinear and optimal feedback control systems. There is special emphasis on the fundamental topics of stability, controllability, and optimality, and on the corresponding geometry associated with these topics. Each chapter contains several examples and a variety of exercises.

Adaptive Dynamic Programming: Single and Multiple Controllers

Download Adaptive Dynamic Programming: Single and Multiple Controllers PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811317127
Total Pages : 278 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Adaptive Dynamic Programming: Single and Multiple Controllers by : Ruizhuo Song

Download or read book Adaptive Dynamic Programming: Single and Multiple Controllers written by Ruizhuo Song and published by Springer. This book was released on 2018-12-28 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a class of novel optimal control methods and games schemes based on adaptive dynamic programming techniques. For systems with one control input, the ADP-based optimal control is designed for different objectives, while for systems with multi-players, the optimal control inputs are proposed based on games. In order to verify the effectiveness of the proposed methods, the book analyzes the properties of the adaptive dynamic programming methods, including convergence of the iterative value functions and the stability of the system under the iterative control laws. Further, to substantiate the mathematical analysis, it presents various application examples, which provide reference to real-world practices.

Adaptive Dynamic Programming with Applications in Optimal Control

Download Adaptive Dynamic Programming with Applications in Optimal Control PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783319508139
Total Pages : 0 pages
Book Rating : 4.5/5 (81 download)

DOWNLOAD NOW!


Book Synopsis Adaptive Dynamic Programming with Applications in Optimal Control by : Derong Liu

Download or read book Adaptive Dynamic Programming with Applications in Optimal Control written by Derong Liu and published by Springer. This book was released on 2017-01-12 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the most recent developments in adaptive dynamic programming (ADP). The text begins with a thorough background review of ADP making sure that readers are sufficiently familiar with the fundamentals. In the core of the book, the authors address first discrete- and then continuous-time systems. Coverage of discrete-time systems starts with a more general form of value iteration to demonstrate its convergence, optimality, and stability with complete and thorough theoretical analysis. A more realistic form of value iteration is studied where value function approximations are assumed to have finite errors. Adaptive Dynamic Programming also details another avenue of the ADP approach: policy iteration. Both basic and generalized forms of policy-iteration-based ADP are studied with complete and thorough theoretical analysis in terms of convergence, optimality, stability, and error bounds. Among continuous-time systems, the control of affine and nonaffine nonlinear systems is studied using the ADP approach which is then extended to other branches of control theory including decentralized control, robust and guaranteed cost control, and game theory. In the last part of the book the real-world significance of ADP theory is presented, focusing on three application examples developed from the authors’ work: • renewable energy scheduling for smart power grids;• coal gasification processes; and• water–gas shift reactions. Researchers studying intelligent control methods and practitioners looking to apply them in the chemical-process and power-supply industries will find much to interest them in this thorough treatment of an advanced approach to control.

Reinforcement Learning and Dynamic Programming Using Function Approximators

Download Reinforcement Learning and Dynamic Programming Using Function Approximators PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439821097
Total Pages : 280 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Reinforcement Learning and Dynamic Programming Using Function Approximators by : Lucian Busoniu

Download or read book Reinforcement Learning and Dynamic Programming Using Function Approximators written by Lucian Busoniu and published by CRC Press. This book was released on 2017-07-28 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: From household appliances to applications in robotics, engineered systems involving complex dynamics can only be as effective as the algorithms that control them. While Dynamic Programming (DP) has provided researchers with a way to optimally solve decision and control problems involving complex dynamic systems, its practical value was limited by algorithms that lacked the capacity to scale up to realistic problems. However, in recent years, dramatic developments in Reinforcement Learning (RL), the model-free counterpart of DP, changed our understanding of what is possible. Those developments led to the creation of reliable methods that can be applied even when a mathematical model of the system is unavailable, allowing researchers to solve challenging control problems in engineering, as well as in a variety of other disciplines, including economics, medicine, and artificial intelligence. Reinforcement Learning and Dynamic Programming Using Function Approximators provides a comprehensive and unparalleled exploration of the field of RL and DP. With a focus on continuous-variable problems, this seminal text details essential developments that have substantially altered the field over the past decade. In its pages, pioneering experts provide a concise introduction to classical RL and DP, followed by an extensive presentation of the state-of-the-art and novel methods in RL and DP with approximation. Combining algorithm development with theoretical guarantees, they elaborate on their work with illustrative examples and insightful comparisons. Three individual chapters are dedicated to representative algorithms from each of the major classes of techniques: value iteration, policy iteration, and policy search. The features and performance of these algorithms are highlighted in extensive experimental studies on a range of control applications. The recent development of applications involving complex systems has led to a surge of interest in RL and DP methods and the subsequent need for a quality resource on the subject. For graduate students and others new to the field, this book offers a thorough introduction to both the basics and emerging methods. And for those researchers and practitioners working in the fields of optimal and adaptive control, machine learning, artificial intelligence, and operations research, this resource offers a combination of practical algorithms, theoretical analysis, and comprehensive examples that they will be able to adapt and apply to their own work. Access the authors' website at www.dcsc.tudelft.nl/rlbook/ for additional material, including computer code used in the studies and information concerning new developments.

Predictive Control for Linear and Hybrid Systems

Download Predictive Control for Linear and Hybrid Systems PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107016886
Total Pages : 447 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Predictive Control for Linear and Hybrid Systems by : Francesco Borrelli

Download or read book Predictive Control for Linear and Hybrid Systems written by Francesco Borrelli and published by Cambridge University Press. This book was released on 2017-06-22 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: With a simple approach that includes real-time applications and algorithms, this book covers the theory of model predictive control (MPC).

Artificial Neural Networks and Machine Learning - ICANN 2011

Download Artificial Neural Networks and Machine Learning - ICANN 2011 PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3642217354
Total Pages : 409 pages
Book Rating : 4.6/5 (422 download)

DOWNLOAD NOW!


Book Synopsis Artificial Neural Networks and Machine Learning - ICANN 2011 by : Timo Honkela

Download or read book Artificial Neural Networks and Machine Learning - ICANN 2011 written by Timo Honkela and published by Springer. This book was released on 2011-06-13 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This two volume set LNCS 6791 and LNCS 6792 constitutes the refereed proceedings of the 21th International Conference on Artificial Neural Networks, ICANN 2011, held in Espoo, Finland, in June 2011. The 106 revised full or poster papers presented were carefully reviewed and selected from numerous submissions. ICANN 2011 had two basic tracks: brain-inspired computing and machine learning research, with strong cross-disciplinary interactions and applications.

Data-Driven Science and Engineering

Download Data-Driven Science and Engineering PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1009098489
Total Pages : 615 pages
Book Rating : 4.0/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Data-Driven Science and Engineering by : Steven L. Brunton

Download or read book Data-Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

Discrete-Time Recurrent Neural Control

Download Discrete-Time Recurrent Neural Control PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351377426
Total Pages : 205 pages
Book Rating : 4.3/5 (513 download)

DOWNLOAD NOW!


Book Synopsis Discrete-Time Recurrent Neural Control by : Edgar N. Sanchez

Download or read book Discrete-Time Recurrent Neural Control written by Edgar N. Sanchez and published by CRC Press. This book was released on 2018-09-03 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book presents recent advances in the theory of neural control for discrete-time nonlinear systems with multiple inputs and multiple outputs. The simulation results that appear in each chapter include rigorous mathematical analyses, based on the Lyapunov approach, to establish its properties. The book contains two sections: the first focuses on the analyses of control techniques; the second is dedicated to illustrating results of real-time applications. It also provides solutions for the output trajectory tracking problem of unknown nonlinear systems based on sliding modes and inverse optimal control scheme. "This book on Discrete-time Recurrent Neural Control is unique in the literature, with new knowledge and information about the new technique of recurrent neural control especially for discrete-time systems. The book is well organized and clearly presented. It will be welcome by a wide range of researchers in science and engineering, especially graduate students and junior researchers who want to learn the new notion of recurrent neural control. I believe it will have a good market. It is an excellent book after all." — Guanrong Chen, City University of Hong Kong "This book includes very relevant topics, about neural control. In these days, Artificial Neural Networks have been recovering their relevance and well-stablished importance, this due to its great capacity to process big amounts of data. Artificial Neural Networks development always is related to technological advancements; therefore, it is not a surprise that now we are being witnesses of this new era in Artificial Neural Networks, however most of the developments in this research area only focuses on applicability of the proposed schemes. However, Edgar N. Sanchez author of this book does not lose focus and include both important applications as well as a deep theoretical analysis of Artificial Neural Networks to control discrete-time nonlinear systems. It is important to remark that first, the considered Artificial Neural Networks are development in discrete-time this simplify its implementation in real-time; secondly, the proposed applications ranging from modelling of unknown discrete-time on linear systems to control electrical machines with an emphasize to renewable energy systems. However, its applications are not limited to these kind of systems, due to their theoretical foundation it can be applicable to a large class of nonlinear systems. All of these is supported by the solid research done by the author." — Alma Y. Alanis, University of Guadalajara, Mexico "This book discusses in detail; how neural networks can be used for optimal as well as robust control design. Design of neural network controllers for real time applications such as induction motors, boost converters, inverted pendulum and doubly fed induction generators has also been carried out which gives the book an edge over other similar titles. This book will be an asset for the novice to the experienced ones." — Rajesh Joseph Abraham, Indian Institute of Space Science & Technology, Thiruvananthapuram, India

Language and Cognition

Download Language and Cognition PDF Online Free

Author :
Publisher : Frontiers Media SA
ISBN 13 : 2889196275
Total Pages : 127 pages
Book Rating : 4.8/5 (891 download)

DOWNLOAD NOW!


Book Synopsis Language and Cognition by : Kuniyoshi L. Sakai

Download or read book Language and Cognition written by Kuniyoshi L. Sakai and published by Frontiers Media SA. This book was released on 2015-07-07 with total page 127 pages. Available in PDF, EPUB and Kindle. Book excerpt: Interaction between language and cognition remains an unsolved scientific problem. What are the differences in neural mechanisms of language and cognition? Why do children acquire language by the age of six, while taking a lifetime to acquire cognition? What is the role of language and cognition in thinking? Is abstract cognition possible without language? Is language just a communication device, or is it fundamental in developing thoughts? Why are there no animals with human thinking but without human language? Combinations even among 100 words and 100 objects (multiple words can represent multiple objects) exceed the number of all the particles in the Universe, and it seems that no amount of experience would suffice to learn these associations. How does human brain overcome this difficulty? Since the 19th century we know about involvement of Broca’s and Wernicke’s areas in language. What new knowledge of language and cognition areas has been found with fMRI and other brain imaging methods? Every year we know more about their anatomical and functional/effective connectivity. What can be inferred about mechanisms of their interaction, and about their functions in language and cognition? Why does the human brain show hemispheric (i.e., left or right) dominance for some specific linguistic and cognitive processes? Is understanding of language and cognition processed in the same brain area, or are there differences in language-semantic and cognitive-semantic brain areas? Is the syntactic process related to the structure of our conceptual world? Chomsky has suggested that language is separable from cognition. On the opposite, cognitive and construction linguistics emphasized a single mechanism of both. Neither has led to a computational theory so far. Evolutionary linguistics has emphasized evolution leading to a mechanism of language acquisition, yet proposed approaches also lead to incomputable complexity. There are some more related issues in linguistics and language education as well. Which brain regions govern phonology, lexicon, semantics, and syntax systems, as well as their acquisitions? What are the differences in acquisition of the first and second languages? Which mechanisms of cognition are involved in reading and writing? Are different writing systems affect relations between language and cognition? Are there differences in language-cognition interactions among different language groups (such as Indo-European, Chinese, Japanese, Semitic) and types (different degrees of analytic-isolating, synthetic-inflected, fused, agglutinative features)? What can be learned from sign languages? Rizzolatti and Arbib have proposed that language evolved on top of earlier mirror-neuron mechanism. Can this proposal answer the unknown questions about language and cognition? Can it explain mechanisms of language-cognition interaction? How does it relate to known brain areas and their interactions identified in brain imaging? Emotional and conceptual contents of voice sounds in animals are fused. Evolution of human language has demanded splitting of emotional and conceptual contents and mechanisms, although language prosody still carries emotional content. Is it a dying-off remnant, or is it fundamental for interaction between language and cognition? If language and cognitive mechanisms differ, unifying these two contents requires motivation, hence emotions. What are these emotions? Can they be measured? Tonal languages use pitch contours for semantic contents, are there differences in language-cognition interaction among tonal and atonal languages? Are emotional differences among cultures exclusively cultural, or also depend on languages? Interaction of language and cognition is thus full of mysteries, and we encourage papers addressing any aspect of this topic.

Masters Theses in the Pure and Applied Sciences

Download Masters Theses in the Pure and Applied Sciences PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461303931
Total Pages : 427 pages
Book Rating : 4.4/5 (613 download)

DOWNLOAD NOW!


Book Synopsis Masters Theses in the Pure and Applied Sciences by : Wade H. Shafer

Download or read book Masters Theses in the Pure and Applied Sciences written by Wade H. Shafer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 427 pages. Available in PDF, EPUB and Kindle. Book excerpt: Masters Theses in the Pure and Applied Sciences was first conceived, published, and disseminated by the Center for Information and Numerical Data Analysis and Synthesis (CINDAS)* at Purdue University in 1957, starting its coverage of theses with the academic year 1955. Beginning with Volume 13, the printing and dis semination phases of the activity were transferred to University Microfilms/Xerox of Ann Arbor, Michigan, with the thought that such an arrangement would be more beneficial to the academic and general scientific and technical community. After five years of this joint undertaking we had concluded that it was in the interest of all concerned if the printing and distribution of the volumes were handled by an international publishing house to assure improved service and broader dissemination. Hence, starting with Volume 18, Masters Theses in the Pure and Applied Sciences has been disseminated on a worldwide basis by Plenum Publishing Corporation of New York, and in the same year the coverage was broadened to include Canadian universities. All back issues can also be ordered from Plenum. We have reported in Volume 39 (thesis year 1994) a total of 13,953 thesis titles from 21 Canadian and 159 United States universities. We are sure that this broader base for these titles reported will greatly enhance the value of this impor tant annual reference work. While Volume 39 reports theses submitted in 1994, on occasion, certain uni versities do report theses submitted in previous years but not reported at the time.

Neural Network Control Of Robot Manipulators And Non-Linear Systems

Download Neural Network Control Of Robot Manipulators And Non-Linear Systems PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 9780748405961
Total Pages : 470 pages
Book Rating : 4.4/5 (59 download)

DOWNLOAD NOW!


Book Synopsis Neural Network Control Of Robot Manipulators And Non-Linear Systems by : F W Lewis

Download or read book Neural Network Control Of Robot Manipulators And Non-Linear Systems written by F W Lewis and published by CRC Press. This book was released on 1998-11-30 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: There has been great interest in "universal controllers" that mimic the functions of human processes to learn about the systems they are controlling on-line so that performance improves automatically. Neural network controllers are derived for robot manipulators in a variety of applications including position control, force control, link flexibility stabilization and the management of high-frequency joint and motor dynamics. The first chapter provides a background on neural networks and the second on dynamical systems and control. Chapter three introduces the robot control problem and standard techniques such as torque, adaptive and robust control. Subsequent chapters give design techniques and Stability Proofs For NN Controllers For Robot Arms, Practical Robotic systems with high frequency vibratory modes, force control and a general class of non-linear systems. The last chapters are devoted to discrete- time NN controllers. Throughout the text, worked examples are provided.

Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021)

Download Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021) PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811694923
Total Pages : 3575 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021) by : Meiping Wu

Download or read book Proceedings of 2021 International Conference on Autonomous Unmanned Systems (ICAUS 2021) written by Meiping Wu and published by Springer Nature. This book was released on 2022-03-18 with total page 3575 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes original, peer-reviewed research papers from the ICAUS 2021, which offers a unique and interesting platform for scientists, engineers and practitioners throughout the world to present and share their most recent research and innovative ideas. The aim of the ICAUS 2021 is to stimulate researchers active in the areas pertinent to intelligent unmanned systems. The topics covered include but are not limited to Unmanned Aerial/Ground/Surface/Underwater Systems, Robotic, Autonomous Control/Navigation and Positioning/ Architecture, Energy and Task Planning and Effectiveness Evaluation Technologies, Artificial Intelligence Algorithm/Bionic Technology and Its Application in Unmanned Systems. The papers showcased here share the latest findings on Unmanned Systems, Robotics, Automation, Intelligent Systems, Control Systems, Integrated Networks, Modeling and Simulation. It makes the book a valuable asset for researchers, engineers, and university students alike.

Differential Neural Networks for Robust Nonlinear Control

Download Differential Neural Networks for Robust Nonlinear Control PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9810246242
Total Pages : 455 pages
Book Rating : 4.8/5 (12 download)

DOWNLOAD NOW!


Book Synopsis Differential Neural Networks for Robust Nonlinear Control by : Alexander S. Poznyak

Download or read book Differential Neural Networks for Robust Nonlinear Control written by Alexander S. Poznyak and published by World Scientific. This book was released on 2001 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with continuous time dynamic neural networks theory applied to the solution of basic problems in robust control theory, including identification, state space estimation (based on neuro-observers) and trajectory tracking. The plants to be identified and controlled are assumed to be a priori unknown but belonging to a given class containing internal unmodelled dynamics and external perturbations as well. The error stability analysis and the corresponding error bounds for different problems are presented. The effectiveness of the suggested approach is illustrated by its application to various controlled physical systems (robotic, chaotic, chemical, etc.).