Reactive Transport Modeling of CO2 Through Cementitious Materials Under CO2 Geological Storage Conditions

Download Reactive Transport Modeling of CO2 Through Cementitious Materials Under CO2 Geological Storage Conditions PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (864 download)

DOWNLOAD NOW!


Book Synopsis Reactive Transport Modeling of CO2 Through Cementitious Materials Under CO2 Geological Storage Conditions by : Jiyun Shen

Download or read book Reactive Transport Modeling of CO2 Through Cementitious Materials Under CO2 Geological Storage Conditions written by Jiyun Shen and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: A reactive transport model is proposed to simulate the reactivity of cement based material in contact with CO2-saturated brine and supercritical CO2 (scCO2) under CO2 geological storage conditions. This code is developed to solve simultaneously transport and chemistry by a global coupled approach, considering the effect of temperature and pressure. The variability of scCO2 properties with pressure and temperature, such as solubility in water, density and viscosity are taken into account. It is assumed that all chemical processes are in thermodynamical equilibrium. Dissolution and precipitation reactions for portlandite (CH) and calcite (CC) are described by mass action laws and threshold of ion activity products in order to account for complete dissolved minerals. A chemical kinetics for the dissolution and precipitation of CH and CC is introduced to facilitate numerical convergence. One properly chosen variable is able to capture the precipitation and dissolution of the relevant phase. A generalization of the mass action law is developed and applied to calcium silicate hydrates (C-S-H) to take into account the continuous variation (decrease) of the Ca/Si ratio during the dissolution reaction of C-S-H. The changes in porosity and microstructure induced by the precipitation and dissolution reactions are also taken into account. Couplings between transport equations and chemical reactions are treated thanks to five mass balance equations written for each atom (Ca, Si, C, K, Cl) as well as one equation for charge balance and one for the total mass. Ion transport is described by using the Nernst-Plank equation as well as advection, while gas and liquid mass flows are governed by advection. Effect of the microstructure and saturation change during carbonation to transport properties is also considered. The model is implemented within a finite-volume code, Bil. Principles of this method and modeling approach are discussed and illustrated with the help of a simple example. This model, with all the efforts above, is able to simulate the carbonation processes for cement based materials, at both saturated and unsaturated conditions, in a wide CO2 concentration, temperature and pressure range. Several sets of experiments, including sandstone-like conditions, limestone-like conditions, supercritical CO2 boundary and unsaturated conditions reported in the literature are simulated. Good predictions are provided by the code when compared with experimental observations. Some experimental observed phenomena are also explained by the model in terms of calcite precipitation front, CH dissolution front, porosity profile, etc.

Reactive Transport Modeling

Download Reactive Transport Modeling PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 111906001X
Total Pages : 598 pages
Book Rating : 4.1/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Reactive Transport Modeling by : Yitian Xiao

Download or read book Reactive Transport Modeling written by Yitian Xiao and published by John Wiley & Sons. This book was released on 2018-03-12 with total page 598 pages. Available in PDF, EPUB and Kindle. Book excerpt: Teaches the application of Reactive Transport Modeling (RTM) for subsurface systems in order to expedite the understanding of the behavior of complex geological systems This book lays out the basic principles and approaches of Reactive Transport Modeling (RTM) for surface and subsurface environments, presenting specific workflows and applications. The techniques discussed are being increasingly commonly used in a wide range of research fields, and the information provided covers fundamental theory, practical issues in running reactive transport models, and how to apply techniques in specific areas. The need for RTM in engineered facilities, such as nuclear waste repositories or CO2 storage sites, is ever increasing, because the prediction of the future evolution of these systems has become a legal obligation. With increasing recognition of the power of these approaches, and their widening adoption, comes responsibility to ensure appropriate application of available tools. This book aims to provide the requisite understanding of key aspects of RTM, and in doing so help identify and thus avoid potential pitfalls. Reactive Transport Modeling covers: the application of RTM for CO2 sequestration and geothermal energy development; reservoir quality prediction; modeling diagenesis; modeling geochemical processes in oil & gas production; modeling gas hydrate production; reactive transport in fractured and porous media; reactive transport studies for nuclear waste disposal; reactive flow modeling in hydrothermal systems; and modeling biogeochemical processes. Key features include: A comprehensive reference for scientists and practitioners entering the area of reactive transport modeling (RTM) Presented by internationally known experts in the field Covers fundamental theory, practical issues in running reactive transport models, and hands-on examples for applying techniques in specific areas Teaches readers to appreciate the power of RTM and to stimulate usage and application Reactive Transport Modeling is written for graduate students and researchers in academia, government laboratories, and industry who are interested in applying reactive transport modeling to the topic of their research. The book will also appeal to geochemists, hydrogeologists, geophysicists, earth scientists, environmental engineers, and environmental chemists.

Geological Carbon Storage

Download Geological Carbon Storage PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119118670
Total Pages : 372 pages
Book Rating : 4.1/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Geological Carbon Storage by : Stéphanie Vialle

Download or read book Geological Carbon Storage written by Stéphanie Vialle and published by John Wiley & Sons. This book was released on 2018-11-15 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geological Carbon Storage Subsurface Seals and Caprock Integrity Seals and caprocks are an essential component of subsurface hydrogeological systems, guiding the movement and entrapment of hydrocarbon and other fluids. Geological Carbon Storage: Subsurface Seals and Caprock Integrity offers a survey of the wealth of recent scientific work on caprock integrity with a focus on the geological controls of permanent and safe carbon dioxide storage, and the commercial deployment of geological carbon storage. Volume highlights include: Low-permeability rock characterization from the pore scale to the core scale Flow and transport properties of low-permeability rocks Fundamentals of fracture generation, self-healing, and permeability Coupled geochemical, transport and geomechanical processes in caprock Analysis of caprock behavior from natural analogues Geochemical and geophysical monitoring techniques of caprock failure and integrity Potential environmental impacts of carbon dioxide migration on groundwater resources Carbon dioxide leakage mitigation and remediation techniques Geological Carbon Storage: Subsurface Seals and Caprock Integrity is an invaluable resource for geoscientists from academic and research institutions with interests in energy and environment-related problems, as well as professionals in the field.

Geochemical kinetics during CO2 sequestration : the reactivity of the Hontomín caprock and the hydration of MgO

Download Geochemical kinetics during CO2 sequestration : the reactivity of the Hontomín caprock and the hydration of MgO PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 222 pages
Book Rating : 4.:/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Geochemical kinetics during CO2 sequestration : the reactivity of the Hontomín caprock and the hydration of MgO by : Gabriela Dávila Ordoñez

Download or read book Geochemical kinetics during CO2 sequestration : the reactivity of the Hontomín caprock and the hydration of MgO written by Gabriela Dávila Ordoñez and published by . This book was released on 2016 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: A test site for CO2 geological storage is situated in Hontomín (Burgos, northern Spain) with a reservoir rock that is mainly composed of limestone. The reservoir rock is a deep saline aquifer, which contains a NaCl- and sulfate-rich groundwater in equilibrium with calcite and gypsum, and is covered by a very low permeability formation composed of marls, marly limestone and bitominous shales which acts as a caprock. During and after CO2 injection, since the resident groundwater contains sulfate, the resulting CO2-rich acid solution may gives rise to the dissolution and precipitation may occur. These reactions that may imply changes in the porosity, permeability and pore structure of the rock could vary the CO2 seal capacity of the caprock. Therefore, performing reliable experiments and reactive transport modeling to gain knowledge about the overall process of gypsum precipitation at the expense of calcite dissolution in CO2-rich solutions and its implications for the hydrodynamic properties of the caprock is necessary. A first aim of this thesis is to better understand these coupled reactions by assessing the effect that PTotal, pCO2, T, mineralogy, acidity and solution saturation state exert on these reactions. To this end, flow-through experiments with illite powder samples and flow-through experiments and columns filled with crushed marly limestone are conducted under different PTotal-pCO2 conditions (atmospheric: 1-10-3.5 and subcritical: 10-10 bar), T (25 and 60 °C) and input solution compositions (gypsum-undersaturated and gypsum-equilibrated solutions). A second aim of this PhD study is to evaluate the interaction between the Hontomín marl and CO2-rich sulfate solutions under supercritical CO2 conditions (PTotal = 150 bar, pCO2 = 61 bar and T = 60 °C). Flow-through percolation experiments were performed using artificially fractured cores to elucidate (i) the role of the composition of the injected solutions (S-free and S-rich solutions) and (ii) the effect of the flow rate (0.2, 1 and 60 mL min-1) on fracture permeability. Major dissolution of calcite (S-free and S-rich solutions) and precipitation of gypsum (S-rich solution) together with minor dissolution of the silicate minerals contributed to the formation of an altered skeleton-like zone (mainly made up of unreacted clays) along the fracture walls. Dissolution patterns changed from face dissolution to wormhole formation and uniform dissolution with increasing Peclet numbers. The third aim is to study caustic magnesia (MgO) as an alternative to Portland cement, not only to be used in the space between the well casing and the rock but also to seal rock fractures (grouting). The overall MgO-carbonation process is considered to happen when MgO hydrates rapidly to form brucite (Mg(OH)2). When brucite dissolves in a Ca-rich and CO2-saturated solution, the solution supersaturates with respect to Ca and/or Mg carbonates (e.g., dolomite (CaMg(CO3)2), nesquehonite (MgCO3·3(H2O)), hydromagnesite (Mg5(CO3)4(OH)2·4(H2O)) and magnesite (MgCO3)). Different T and pCO2 conditions will determine the formation of these carbonates. The molar volumes of the implicated minerals (cm3 mol-1) [(Mg(OH)2 (24.63), CaCO3 (36.93), MgCO3 (28.02), CaMg(CO3)2 (64.37), Mg5(CO3)4(OH)2·4(H2O) (208.08), MgCO3·3(H2O) (75.47)], with large molar volumes for the secondary phases, favor a potential decrease in porosity and hence the sealing of cracks in cement structures, preventing CO2 leakage. MgO carbonation has been studied by means of batch experiments under subcritic (pCO2 of 10 and 50 bar and T of 25, 70 and 90 °C) and supercritic (pCO2 of 74 bar and T of 70 and 90 °C) CO2 conditions. In all cases, CrunchFlow numerical code was used to perform 1D, 2D and OD reactive transport simulations of the experiments to evaluate mineral reaction rates in the system and quantify the porosity variation in the columns, percolation and batch experiments respectively.

Geomechanics in CO2 Storage Facilities

Download Geomechanics in CO2 Storage Facilities PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118577450
Total Pages : 258 pages
Book Rating : 4.1/5 (185 download)

DOWNLOAD NOW!


Book Synopsis Geomechanics in CO2 Storage Facilities by : Gilles Pijaudier-Cabot

Download or read book Geomechanics in CO2 Storage Facilities written by Gilles Pijaudier-Cabot and published by John Wiley & Sons. This book was released on 2013-01-29 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: CO2 capture and geological storage is seen as the most effective technology to rapidly reduce the emission of greenhouse gases into the atmosphere. Up until now and before proceeding to an industrial development of this technology, laboratory research has been conducted for several years and pilot projects have been launched. So far, these studies have mainly focused on transport and geochemical issues and few studies have been dedicated to the geomechanical issues in CO2 storage facilities. The purpose of this book is to give an overview of the multiphysics processes occurring in CO2 storage facilities, with particular attention given to coupled geomechanical problems. The book is divided into three parts. The first part is dedicated to transport processes and focuses on the efficiency of the storage complex and the evaluation of possible leakage paths. The second part deals with issues related to reservoir injectivity and the presence of fractures and occurrence of damage. The final part of the book concerns the serviceability and ageing of the geomaterials whose poromechanical properties may be altered by contact with the injected reactive fluid.

Geologic Carbon Sequestration

Download Geologic Carbon Sequestration PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319270192
Total Pages : 336 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Geologic Carbon Sequestration by : V. Vishal

Download or read book Geologic Carbon Sequestration written by V. Vishal and published by Springer. This book was released on 2016-05-11 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This exclusive compilation written by eminent experts from more than ten countries, outlines the processes and methods for geologic sequestration in different sinks. It discusses and highlights the details of individual storage types, including recent advances in the science and technology of carbon storage. The topic is of immense interest to geoscientists, reservoir engineers, environmentalists and researchers from the scientific and industrial communities working on the methodologies for carbon dioxide storage. Increasing concentrations of anthropogenic carbon dioxide in the atmosphere are often held responsible for the rising temperature of the globe. Geologic sequestration prevents atmospheric release of the waste greenhouse gases by storing them underground for geologically significant periods of time. The book addresses the need for an understanding of carbon reservoir characteristics and behavior. Other book volumes on carbon capture, utilization and storage (CCUS) attempt to cover the entire process of CCUS, but the topic of geologic sequestration is not discussed in detail. This book focuses on the recent trends and up-to-date information on different storage rock types, ranging from deep saline aquifers to coal to basaltic formations.

Reactive Transport Modeling for CO2 Geological Sequestration

Download Reactive Transport Modeling for CO2 Geological Sequestration PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (925 download)

DOWNLOAD NOW!


Book Synopsis Reactive Transport Modeling for CO2 Geological Sequestration by :

Download or read book Reactive Transport Modeling for CO2 Geological Sequestration written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Geochemistry of Geologic CO2 Sequestration

Download Geochemistry of Geologic CO2 Sequestration PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 1501508075
Total Pages : 556 pages
Book Rating : 4.5/5 (15 download)

DOWNLOAD NOW!


Book Synopsis Geochemistry of Geologic CO2 Sequestration by : Donald J. DePaolo

Download or read book Geochemistry of Geologic CO2 Sequestration written by Donald J. DePaolo and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-12-17 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 77 of Reviews in Mineralogy and Geochemistry focuses on important aspects of the geochemistry of geological CO2 sequestration. It is in large part an outgrowth of research conducted by members of the U.S. Department of Energy funded Energy Frontier Research Center (EFRC) known as the Center for Nanoscale Control of Geologic CO2 (NCGC). Eight out of the 15 chapters have been led by team members from the NCGC representing six of the eight partner institutions making up this center - Lawrence Berkeley National Laboratory (lead institution, D. DePaolo - PI), Oak Ridge National Laboratory, The Ohio State University, the University of California Davis, Pacific Northwest National Laboratory, and Washington University, St. Louis.

Geological Storage of CO2

Download Geological Storage of CO2 PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118137078
Total Pages : 212 pages
Book Rating : 4.1/5 (181 download)

DOWNLOAD NOW!


Book Synopsis Geological Storage of CO2 by : Jan Martin Nordbotten

Download or read book Geological Storage of CO2 written by Jan Martin Nordbotten and published by John Wiley & Sons. This book was released on 2011-10-24 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite the large research effort in both public and commercial companies, no textbook has yet been written on this subject. This book aims to provide an overview to the topic of Carbon Capture and Storage (CSS), while at the same time focusing on the dominant processes and the mathematical and numerical methods that need to be employed in order to analyze the relevant systems. The book clearly states the carbon problem and the role of CCS and carbon storage. Thereafter, it provides an introduction to single phase and multi-phase flow in porous media, including some of the most common mathematical analysis and an overview of numerical methods for the equations. A considerable part of the book discusses the appropriate scales of modeling, and how to formulate consistent governing equations at these scales. The book also illustrates real world data sets and how the ideas in the book can be exploited through combinations of analytical and numerical approaches.

Reactive Transport Modelling of CO2 Storage in Saline Aquifers to Elucidate Fundamental Processes, Trapping Mechanisms, and Sequestration Partitioning

Download Reactive Transport Modelling of CO2 Storage in Saline Aquifers to Elucidate Fundamental Processes, Trapping Mechanisms, and Sequestration Partitioning PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 22 pages
Book Rating : 4.:/5 (873 download)

DOWNLOAD NOW!


Book Synopsis Reactive Transport Modelling of CO2 Storage in Saline Aquifers to Elucidate Fundamental Processes, Trapping Mechanisms, and Sequestration Partitioning by :

Download or read book Reactive Transport Modelling of CO2 Storage in Saline Aquifers to Elucidate Fundamental Processes, Trapping Mechanisms, and Sequestration Partitioning written by and published by . This book was released on 2004 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt: The ultimate fate of CO2 injected into saline aquifers for environmental isolation is governed by three interdependent yet conceptually distinct processes: CO2 migration as a buoyant immiscible fluid phase, direct chemical interaction of this rising plume with ambient saline waters, and its indirect chemical interaction with aquifer and cap-rock minerals through the aqueous wetting phase. Each process is directly linked to a corresponding trapping mechanism: immiscible plume migration to hydrodynamic trapping, plume-water interaction to solubility trapping, and plume-mineral interaction to mineral trapping. In this study, reactive transport modeling of CO2 storage in a shale-capped sandstone aquifer at Sleipner has elucidated and established key parametric dependencies of these fundamental processes, the associated trapping mechanisms, and sequestration partitioning among them during consecutive 10-year prograde (active-injection) and retrograde (post-injection) regimes. Intra-aquifer permeability structure controls the path of immiscible CO2 migration, thereby establishing the spatial framework of plume-aquifer interaction and the potential effectiveness of solubility and mineral trapping. Inter-bedded thin shales--which occur at Sleipner--retard vertical and promote lateral plume migration, thereby significantly expanding this framework and enhancing this potential. Actual efficacy of these trapping mechanisms is determined by compositional characteristics of the aquifer and cap rock: the degree of solubility trapping decreases with increasing formation-water salinity, while that of mineral trapping is proportional to the bulk concentration of carbonate-forming elements--principally Fe, Mg, Ca, Na, and Al. In the near-field environment of Sleipner-like settings, 80-85% by mass of injected CO2 remains and migrates as an immiscible fluid phase, 15-20% dissolves into formation waters, and less than 1% precipitates as carbonate minerals. This partitioning defines the relative effectiveness of hydrodynamic, solubility, and mineral trapping on a mass basis. Seemingly inconsequential, mineral trapping has enormous strategic significance: it maintains injectivity, delineates the storage volume, and improves cap-rock integrity. We have identified four distinct mechanisms: dawsonite [NaAlCO3(OH)2] cementation occurs throughout the intra-aquifer plume, while calcite-group carbonates [principally, (Fe, Mg, Ca)CO3] precipitate via disparate processes along lateral and upper plume margins, and by yet another process within inter-bedded and cap-rock shales. The coupled mineral dissolution/precipitation reaction associated with each mechanism reduces local porosity and permeability. For Sleipner-like settings, the magnitude of such reduction for dawsonite cementation is near negligible; hence, this process effectively maintains initial CO2 injectivity. Of similarly small magnitude is the reduction associated with formation of carbonate rind along upper and lateral plume boundaries; these processes effectively delineate the CO2 storage volume, and for saline aquifers anomalously rich in Fe-Mg-Ca may partially self-seal the plume. Porosity and permeability reduction is most extreme within shales, because their clay-rich mineralogy defines bulk Fe-Mg concentrations much greater than those of saline aquifers. In the basal cap-rock shale of our models, these reductions amount to 4.5 and 13%, respectively, after the prograde regime. During the retrograde phase, residual saturation of immiscible CO2 maintains the prograde extent of solubility trapping while continuously enhancing that of mineral trapping. At the close of our 20-year simulations, initial porosity and permeability of the basal cap-rock shale have been reduced by 8 and 22%, respectively. Extrapolating to hypothetical complete consumption of Fe-Mg-bearing shale minerals (here, 10 vol.% Mg-chlorite) yields an ultimate reduction of about 52 and 90%, respectively, after 130 years. Hence, the most crucial strategic impact of mineral trapping in Sleipner-like settings: it continuously improves hydrodynamic seal integrity of the cap rock and, therefore, containment of the immiscible plume and solubility trapped CO2.

Novel Materials for Carbon Dioxide Mitigation Technology

Download Novel Materials for Carbon Dioxide Mitigation Technology PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0444632611
Total Pages : 413 pages
Book Rating : 4.4/5 (446 download)

DOWNLOAD NOW!


Book Synopsis Novel Materials for Carbon Dioxide Mitigation Technology by : Bryan Morreale

Download or read book Novel Materials for Carbon Dioxide Mitigation Technology written by Bryan Morreale and published by Elsevier. This book was released on 2015-06-01 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Materials for Carbon Dioxide Mitigation Technology offers expert insight and experience from recognized authorities in advanced material development in carbon mitigation technology and constitutes a comprehensive guide to the selection and design of a wide range of solvent/sorbent/catalyst used by scientists globally. It appeals to chemical scientists, material scientists and engineers, energy researchers, and environmental scientists from academia, industry, and government in their research directed toward greener, more efficient carbon mitigation processes. Emphasizes material development for carbon mitigation technologies rather than regulations Provides a fundamental understanding of the underpinning science as well as technological approaches to implement carbon capture, utilization and storage technologies Introduces the driving force behind novel materials, their performance and applications for carbon dioxide mitigation Contains figures, tables and an abundance of examples clearly explaining the development, characterization and evaluation of novel carbon mitigation materials Includes hundreds of citations drawing on the most recent published works on the subject Provides a wealth of real-world examples, illustrating how to bridge nano-scale materials to bulk carbon mitigation properties

Multiphase Flow and Reactive Transport Modelling of CO2 Storage in Heterogeneous Reservoirs

Download Multiphase Flow and Reactive Transport Modelling of CO2 Storage in Heterogeneous Reservoirs PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 278 pages
Book Rating : 4.:/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Multiphase Flow and Reactive Transport Modelling of CO2 Storage in Heterogeneous Reservoirs by : Jolene Lorraine Hermanson

Download or read book Multiphase Flow and Reactive Transport Modelling of CO2 Storage in Heterogeneous Reservoirs written by Jolene Lorraine Hermanson and published by . This book was released on 2013 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: This study addresses how physical heterogeneity, representing different sedimentary rock layers and the relationships between those layers, impacts the distribution of CO2, and thus the type and extent of mineral dissolution and precipitation reactions during CO2 geologic storage in deep saline aquifers. Numerical multiphase flow (TOUGH2) and reactive transport codes (TOUGHREACT) were used to construct a series of reservoir scale simulations to investigate how the flow controlling parameter values, distribution, and grid refinement of various hydrostratigraphic units (HSUs) affect the distribution of CO2, pH and mineral reactions. Physical heterogeneity is critical for controlling the distribution of supercritical and dissolved CO2, the redistribution of ions from geochemically reactive materials to more stable portions of the reservoir, mixing and dilution of CO2-rich waters, and the extent of mineral dissolution and precipitation reactions. The highest magnitude of carbonate mineral precipitation occurs at the sandstone-siltstone interface and along the extent of the CO2-water contact.

Geological Storage of CO2 – Long Term Security Aspects

Download Geological Storage of CO2 – Long Term Security Aspects PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319139304
Total Pages : 251 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Geological Storage of CO2 – Long Term Security Aspects by : Axel Liebscher

Download or read book Geological Storage of CO2 – Long Term Security Aspects written by Axel Liebscher and published by Springer. This book was released on 2015-02-21 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the industrial use of secure, permanent storage technologies for carbon dioxide (CO2), especially geological CO2 storage. Readers are invited to discover how this greenhouse gas could be spared from permanent release into the atmosphere through storage in deep rock formations. Themes explored here include CO2 reservoir management, caprock formation, bio-chemical processes and fluid migration. Particular attention is given to groundwater protection, the improvement of sensor technology, borehole seals and cement quality. A collaborative work by scientists and industrial partners, this volume presents original research, it investigates several aspects of innovative technologies for medium-term use and it includes a detailed risk analysis. Coal-based power generation, energy consuming industrial processes (such as steel and cement) and the burning of biomass all result in carbon dioxide. Those involved in such industries who are considering geological storage of CO2, as well as earth scientists and engineers will value this book and the innovative monitoring methods described. Researchers in the field of computer imaging and pattern recognition will also find something of interest in these chapters.

Reactive Transport Modeling of the Enhancement of Density-driven CO2 Convective Mixing in Carbonate Aquifers and Its Potential Implication on Geological Carbon Sequestration

Download Reactive Transport Modeling of the Enhancement of Density-driven CO2 Convective Mixing in Carbonate Aquifers and Its Potential Implication on Geological Carbon Sequestration PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (953 download)

DOWNLOAD NOW!


Book Synopsis Reactive Transport Modeling of the Enhancement of Density-driven CO2 Convective Mixing in Carbonate Aquifers and Its Potential Implication on Geological Carbon Sequestration by :

Download or read book Reactive Transport Modeling of the Enhancement of Density-driven CO2 Convective Mixing in Carbonate Aquifers and Its Potential Implication on Geological Carbon Sequestration written by and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: We study the convection and mixing of CO2 in a brine aquifer, where the spread of dissolved CO2 is enhanced because of geochemical reactions with the host formations (calcite and dolomite), in addition to the extensively studied, buoyancy-driven mixing. The nonlinear convection is investigated under the assumptions of instantaneous chemical equilibrium, and that the dissipation of carbonate rocks solely depends on flow and transport and chemical speciation depends only on the equilibrium thermodynamics of the chemical system. The extent of convection is quantified in term of the CO2 saturation volume of the storage formation. Our results suggest that the density increase of resident species causes significant enhancement in CO2 dissolution, although no significant porosity and permeability alterations are observed. Furthermore, early saturation of the reservoir can have negative impact on CO2 sequestration.

Reactive Transport Modeling to Study Changes in Water Chemistry Induced by CO2 Injection at the Frio-I Brine Pilot

Download Reactive Transport Modeling to Study Changes in Water Chemistry Induced by CO2 Injection at the Frio-I Brine Pilot PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (727 download)

DOWNLOAD NOW!


Book Synopsis Reactive Transport Modeling to Study Changes in Water Chemistry Induced by CO2 Injection at the Frio-I Brine Pilot by :

Download or read book Reactive Transport Modeling to Study Changes in Water Chemistry Induced by CO2 Injection at the Frio-I Brine Pilot written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: To demonstrate the potential for geologic storage of CO2 in saline aquifers, the Frio-I Brine Pilot was conducted, during which 1600 tons of CO2 were injected into a high-permeability sandstone and the resulting subsurface plume of CO2 was monitored using a variety of hydrogeological, geophysical, and geochemical techniques. Fluid samples were obtained before CO2 injection for baseline geochemical characterization, during the CO2 injection to track its breakthrough at a nearby observation well, and after injection to investigate changes in fluid composition and potential leakage into an overlying zone. Following CO2 breakthrough at the observation well, brine samples showed sharp drops in pH, pronounced increases in HCO3− and aqueous Fe, and significant shifts in the isotopic compositions of H2O and dissolved inorganic carbon. Based on a calibrated 1-D radial flow model, reactive transport modeling was performed for the Frio-I Brine Pilot. A simple kinetic model of Fe release from the solid to aqueous phase was developed, which can reproduce the observed increases in aqueous Fe concentration. Brine samples collected after half a year had lower Fe concentrations due to carbonate precipitation, and this trend can be also captured by our modeling. The paper provides a method for estimating potential mobile Fe inventory, and its bounding concentration in the storage formation from limited observation data. Long-term simulations show that the CO2 plume gradually spreads outward due to capillary forces, and the gas saturation gradually decreases due to its dissolution and precipitation of carbonates. The gas phase is predicted to disappear after 500 years. Elevated aqueous CO2 concentrations remain for a longer time, but eventually decrease due to carbonate precipitation. For the Frio-I Brine Pilot, all injected CO2 could ultimately be sequestered as carbonate minerals.

Computational Models for CO2 Geo-sequestration & Compressed Air Energy Storage

Download Computational Models for CO2 Geo-sequestration & Compressed Air Energy Storage PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1315778726
Total Pages : 566 pages
Book Rating : 4.3/5 (157 download)

DOWNLOAD NOW!


Book Synopsis Computational Models for CO2 Geo-sequestration & Compressed Air Energy Storage by : Rafid Al-Khoury

Download or read book Computational Models for CO2 Geo-sequestration & Compressed Air Energy Storage written by Rafid Al-Khoury and published by CRC Press. This book was released on 2014-04-17 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive mathematical and computational modeling of CO2 Geosequestration and Compressed Air Energy StorageEnergy and environment are two interrelated issues of great concern to modern civilization. As the world population will soon reach eight billion, the demand for energy will dramatically increase, intensifying the use of fossil fuels. Ut

Science of Carbon Storage in Deep Saline Formations

Download Science of Carbon Storage in Deep Saline Formations PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 9780128127520
Total Pages : 0 pages
Book Rating : 4.1/5 (275 download)

DOWNLOAD NOW!


Book Synopsis Science of Carbon Storage in Deep Saline Formations by : Pania Newell

Download or read book Science of Carbon Storage in Deep Saline Formations written by Pania Newell and published by Elsevier. This book was released on 2018-09-10 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Science of Carbon Storage in Deep Saline Formations: Process Coupling across Time and Spatial Scales summarizes state-of-the-art research, emphasizing how the coupling of physical and chemical processes as subsurface systems re-equilibrate during and after the injection of CO2. In addition, it addresses, in an easy-to-follow way, the lack of knowledge in understanding the coupled processes related to fluid flow, geomechanics and geochemistry over time and spatial scales. The book uniquely highlights process coupling and process interplay across time and spatial scales that are relevant to geological carbon storage.