Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Random Factors In Anova
Download Random Factors In Anova full books in PDF, epub, and Kindle. Read online Random Factors In Anova ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Random Factors in ANOVA by : Sally Ann Jackson
Download or read book Random Factors in ANOVA written by Sally Ann Jackson and published by SAGE. This book was released on 1994 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides the reader with the criteria to make the distinction between fixed and random levels among factors, an important decision that directly reflects the purpose of the research.
Book Synopsis Doing Meta-Analysis with R by : Mathias Harrer
Download or read book Doing Meta-Analysis with R written by Mathias Harrer and published by CRC Press. This book was released on 2021-09-15 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Doing Meta-Analysis with R: A Hands-On Guide serves as an accessible introduction on how meta-analyses can be conducted in R. Essential steps for meta-analysis are covered, including calculation and pooling of outcome measures, forest plots, heterogeneity diagnostics, subgroup analyses, meta-regression, methods to control for publication bias, risk of bias assessments and plotting tools. Advanced but highly relevant topics such as network meta-analysis, multi-three-level meta-analyses, Bayesian meta-analysis approaches and SEM meta-analysis are also covered. A companion R package, dmetar, is introduced at the beginning of the guide. It contains data sets and several helper functions for the meta and metafor package used in the guide. The programming and statistical background covered in the book are kept at a non-expert level, making the book widely accessible. Features • Contains two introductory chapters on how to set up an R environment and do basic imports/manipulations of meta-analysis data, including exercises • Describes statistical concepts clearly and concisely before applying them in R • Includes step-by-step guidance through the coding required to perform meta-analyses, and a companion R package for the book
Book Synopsis Design and Analysis of Experiments by : Douglas C. Montgomery
Download or read book Design and Analysis of Experiments written by Douglas C. Montgomery and published by Wiley. This book was released on 2005 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This bestselling professional reference has helped over 100,000 engineers and scientists with the success of their experiments. The new edition includes more software examples taken from the three most dominant programs in the field: Minitab, JMP, and SAS. Additional material has also been added in several chapters, including new developments in robust design and factorial designs. New examples and exercises are also presented to illustrate the use of designed experiments in service and transactional organizations. Engineers will be able to apply this information to improve the quality and efficiency of working systems.
Book Synopsis Linear Mixed Models by : Brady T. West
Download or read book Linear Mixed Models written by Brady T. West and published by CRC Press. This book was released on 2006-11-22 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simplifying the often confusing array of software programs for fitting linear mixed models (LMMs), Linear Mixed Models: A Practical Guide Using Statistical Software provides a basic introduction to primary concepts, notation, software implementation, model interpretation, and visualization of clustered and longitudinal data. This easy-to-nav
Book Synopsis The Analysis of Variance by : Hardeo Sahai
Download or read book The Analysis of Variance written by Hardeo Sahai and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 766 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis of variance (ANOYA) models have become one of the most widely used tools of modern statistics for analyzing multifactor data. The ANOYA models provide versatile statistical tools for studying the relationship between a dependent variable and one or more independent variables. The ANOYA mod els are employed to determine whether different variables interact and which factors or factor combinations are most important. They are appealing because they provide a conceptually simple technique for investigating statistical rela tionships among different independent variables known as factors. Currently there are several texts and monographs available on the sub ject. However, some of them such as those of Scheffe (1959) and Fisher and McDonald (1978), are written for mathematically advanced readers, requiring a good background in calculus, matrix algebra, and statistical theory; whereas others such as Guenther (1964), Huitson (1971), and Dunn and Clark (1987), although they assume only a background in elementary algebra and statistics, treat the subject somewhat scantily and provide only a superficial discussion of the random and mixed effects analysis of variance.
Book Synopsis Learning Statistics with R by : Daniel Navarro
Download or read book Learning Statistics with R written by Daniel Navarro and published by Lulu.com. This book was released on 2013-01-13 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com
Book Synopsis Mixed-Effects Models in S and S-PLUS by : José C. Pinheiro
Download or read book Mixed-Effects Models in S and S-PLUS written by José C. Pinheiro and published by Springer Science & Business Media. This book was released on 2009-04-15 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: R, linear models, random, fixed, data, analysis, fit.
Book Synopsis Introduction to Mixed Modelling by : N. W. Galwey
Download or read book Introduction to Mixed Modelling written by N. W. Galwey and published by John Wiley & Sons. This book was released on 2007-04-04 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mixed modelling is one of the most promising and exciting areas ofstatistical analysis, enabling more powerful interpretation of datathrough the recognition of random effects. However, many perceivemixed modelling as an intimidating and specialized technique. Thisbook introduces mixed modelling analysis in a simple andstraightforward way, allowing the reader to apply the techniqueconfidently in a wide range of situations. Introduction to Mixed Modelling shows that mixedmodelling is a natural extension of the more familiar statisticalmethods of regression analysis and analysis of variance. In doingso, it provides the ideal introduction to this importantstatistical technique for those engaged in the statistical analysisof data. This essential book: Demonstrates the power of mixed modelling in a wide range ofdisciplines, including industrial research, social sciences,genetics, clinical research, ecology and agriculturalresearch. Illustrates how the capabilities of regression analysis can becombined with those of ANOVA by the specification of a mixedmodel. Introduces the criterion of Restricted Maximum Likelihood(REML) for the fitting of a mixed model to data. Presents the application of mixed model analysis to a widerange of situations and explains how to obtain and interpret BestLinear Unbiased Predictors (BLUPs). Features a supplementary website containing solutions toexercises, further examples, and links to the computer softwaresystems GenStat and R. This book provides a comprehensive introduction to mixedmodelling, ideal for final year undergraduate students,postgraduate students and professional researchers alike. Readerswill come from a wide range of scientific disciplines includingstatistics, biology, bioinformatics, medicine, agriculture,engineering, economics, and social sciences.
Book Synopsis Hierarchical Linear Models by : Stephen W. Raudenbush
Download or read book Hierarchical Linear Models written by Stephen W. Raudenbush and published by SAGE. This book was released on 2002 with total page 520 pages. Available in PDF, EPUB and Kindle. Book excerpt: New edition of a text in which Raudenbush (U. of Michigan) and Bryk (sociology, U. of Chicago) provide examples, explanations, and illustrations of the theory and use of hierarchical linear models (HLM). New material in Part I (Logic) includes information on multivariate growth models and other topics.
Book Synopsis Applied Mixed Model Analysis by : Jos W. R. Twisk
Download or read book Applied Mixed Model Analysis written by Jos W. R. Twisk and published by Cambridge University Press. This book was released on 2019-04-18 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Emphasizing interpretation of results, this hands-on guide explains why, when, and how to use mixed models with your data.
Book Synopsis Statistical Rethinking by : Richard McElreath
Download or read book Statistical Rethinking written by Richard McElreath and published by CRC Press. This book was released on 2018-01-03 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Rethinking: A Bayesian Course with Examples in R and Stan builds readers’ knowledge of and confidence in statistical modeling. Reflecting the need for even minor programming in today’s model-based statistics, the book pushes readers to perform step-by-step calculations that are usually automated. This unique computational approach ensures that readers understand enough of the details to make reasonable choices and interpretations in their own modeling work. The text presents generalized linear multilevel models from a Bayesian perspective, relying on a simple logical interpretation of Bayesian probability and maximum entropy. It covers from the basics of regression to multilevel models. The author also discusses measurement error, missing data, and Gaussian process models for spatial and network autocorrelation. By using complete R code examples throughout, this book provides a practical foundation for performing statistical inference. Designed for both PhD students and seasoned professionals in the natural and social sciences, it prepares them for more advanced or specialized statistical modeling. Web Resource The book is accompanied by an R package (rethinking) that is available on the author’s website and GitHub. The two core functions (map and map2stan) of this package allow a variety of statistical models to be constructed from standard model formulas.
Book Synopsis Multilevel Analysis by : Tom A. B. Snijders
Download or read book Multilevel Analysis written by Tom A. B. Snijders and published by SAGE. This book was released on 1999 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multilevel analysis covers all the main methods, techniques and issues for carrying out multilevel modeling and analysis. The approach is applied, and less mathematical than many other textbooks.
Book Synopsis Experimental Design and Data Analysis for Biologists by : Gerald Peter Quinn
Download or read book Experimental Design and Data Analysis for Biologists written by Gerald Peter Quinn and published by Cambridge University Press. This book was released on 2002-03-21 with total page 560 pages. Available in PDF, EPUB and Kindle. Book excerpt: Regression, analysis of variance, correlation, graphical.
Book Synopsis SAS for Mixed Models by : Walter W. Stroup
Download or read book SAS for Mixed Models written by Walter W. Stroup and published by SAS Institute. This book was released on 2018-12-12 with total page 823 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover the power of mixed models with SAS. Mixed models—now the mainstream vehicle for analyzing most research data—are part of the core curriculum in most master’s degree programs in statistics and data science. In a single volume, this book updates both SAS® for Linear Models, Fourth Edition, and SAS® for Mixed Models, Second Edition, covering the latest capabilities for a variety of applications featuring the SAS GLIMMIX and MIXED procedures. Written for instructors of statistics, graduate students, scientists, statisticians in business or government, and other decision makers, SAS® for Mixed Models is the perfect entry for those with a background in two-way analysis of variance, regression, and intermediate-level use of SAS. This book expands coverage of mixed models for non-normal data and mixed-model-based precision and power analysis, including the following topics: Random-effect-only and random-coefficients models Multilevel, split-plot, multilocation, and repeated measures models Hierarchical models with nested random effects Analysis of covariance models Generalized linear mixed models This book is part of the SAS Press program.
Book Synopsis Encyclopedia of Research Design by : Neil J. Salkind
Download or read book Encyclopedia of Research Design written by Neil J. Salkind and published by SAGE. This book was released on 2010-06-22 with total page 1779 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Comprising more than 500 entries, the Encyclopedia of Research Design explains how to make decisions about research design, undertake research projects in an ethical manner, interpret and draw valid inferences from data, and evaluate experiment design strategies and results. Two additional features carry this encyclopedia far above other works in the field: bibliographic entries devoted to significant articles in the history of research design and reviews of contemporary tools, such as software and statistical procedures, used to analyze results. It covers the spectrum of research design strategies, from material presented in introductory classes to topics necessary in graduate research; it addresses cross- and multidisciplinary research needs, with many examples drawn from the social and behavioral sciences, neurosciences, and biomedical and life sciences; it provides summaries of advantages and disadvantages of often-used strategies; and it uses hundreds of sample tables, figures, and equations based on real-life cases."--Publisher's description.
Book Synopsis Models for Discrete Longitudinal Data by : Geert Molenberghs
Download or read book Models for Discrete Longitudinal Data written by Geert Molenberghs and published by Springer Science & Business Media. This book was released on 2006-08-30 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: The linear mixed model has become the main parametric tool for the analysis of continuous longitudinal data, as the authors discussed in their 2000 book. Without putting too much emphasis on software, the book shows how the different approaches can be implemented within the SAS software package. The authors received the American Statistical Association's Excellence in Continuing Education Award based on short courses on longitudinal and incomplete data at the Joint Statistical Meetings of 2002 and 2004.
Book Synopsis Variance Components by : Shayle R. Searle
Download or read book Variance Components written by Shayle R. Searle and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 537 pages. Available in PDF, EPUB and Kindle. Book excerpt: WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. ". . .Variance Components is an excellent book. It is organized and well written, and provides many references to a variety of topics. I recommend it to anyone with interest in linear models." —Journal of the American Statistical Association "This book provides a broad coverage of methods for estimating variance components which appeal to students and research workers . . . The authors make an outstanding contribution to teaching and research in the field of variance component estimation." —Mathematical Reviews "The authors have done an excellent job in collecting materials on a broad range of topics. Readers will indeed gain from using this book . . . I must say that the authors have done a commendable job in their scholarly presentation." —Technometrics This book focuses on summarizing the variability of statistical data known as the analysis of variance table. Penned in a readable style, it provides an up-to-date treatment of research in the area. The book begins with the history of analysis of variance and continues with discussions of balanced data, analysis of variance for unbalanced data, predictions of random variables, hierarchical models and Bayesian estimation, binary and discrete data, and the dispersion mean model.