Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Quasi Bayesian Estimation Of Time Varying Volatility In Dsge Models
Download Quasi Bayesian Estimation Of Time Varying Volatility In Dsge Models full books in PDF, epub, and Kindle. Read online Quasi Bayesian Estimation Of Time Varying Volatility In Dsge Models ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis The Oxford Handbook of Bayesian Econometrics by : John Geweke
Download or read book The Oxford Handbook of Bayesian Econometrics written by John Geweke and published by Oxford University Press. This book was released on 2011-09-29 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian econometric methods have enjoyed an increase in popularity in recent years. Econometricians, empirical economists, and policymakers are increasingly making use of Bayesian methods. This handbook is a single source for researchers and policymakers wanting to learn about Bayesian methods in specialized fields, and for graduate students seeking to make the final step from textbook learning to the research frontier. It contains contributions by leading Bayesians on the latest developments in their specific fields of expertise. The volume provides broad coverage of the application of Bayesian econometrics in the major fields of economics and related disciplines, including macroeconomics, microeconomics, finance, and marketing. It reviews the state of the art in Bayesian econometric methodology, with chapters on posterior simulation and Markov chain Monte Carlo methods, Bayesian nonparametric techniques, and the specialized tools used by Bayesian time series econometricians such as state space models and particle filtering. It also includes chapters on Bayesian principles and methodology.
Book Synopsis Bayesian Estimation of DSGE Models by : Edward P. Herbst
Download or read book Bayesian Estimation of DSGE Models written by Edward P. Herbst and published by Princeton University Press. This book was released on 2015-12-29 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamic stochastic general equilibrium (DSGE) models have become one of the workhorses of modern macroeconomics and are extensively used for academic research as well as forecasting and policy analysis at central banks. This book introduces readers to state-of-the-art computational techniques used in the Bayesian analysis of DSGE models. The book covers Markov chain Monte Carlo techniques for linearized DSGE models, novel sequential Monte Carlo methods that can be used for parameter inference, and the estimation of nonlinear DSGE models based on particle filter approximations of the likelihood function. The theoretical foundations of the algorithms are discussed in depth, and detailed empirical applications and numerical illustrations are provided. The book also gives invaluable advice on how to tailor these algorithms to specific applications and assess the accuracy and reliability of the computations. Bayesian Estimation of DSGE Models is essential reading for graduate students, academic researchers, and practitioners at policy institutions.
Book Synopsis Bayesian Multivariate Time Series Methods for Empirical Macroeconomics by : Gary Koop
Download or read book Bayesian Multivariate Time Series Methods for Empirical Macroeconomics written by Gary Koop and published by Now Publishers Inc. This book was released on 2010 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Multivariate Time Series Methods for Empirical Macroeconomics provides a survey of the Bayesian methods used in modern empirical macroeconomics. These models have been developed to address the fact that most questions of interest to empirical macroeconomists involve several variables and must be addressed using multivariate time series methods. Many different multivariate time series models have been used in macroeconomics, but Vector Autoregressive (VAR) models have been among the most popular. Bayesian Multivariate Time Series Methods for Empirical Macroeconomics reviews and extends the Bayesian literature on VARs, TVP-VARs and TVP-FAVARs with a focus on the practitioner. The authors go beyond simply defining each model, but specify how to use them in practice, discuss the advantages and disadvantages of each and offer tips on when and why each model can be used.
Book Synopsis Computational Methods for the Study of Dynamic Economies by : Ramon Marimon
Download or read book Computational Methods for the Study of Dynamic Economies written by Ramon Marimon and published by OUP Oxford. This book was released on 1999-03-04 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Macroeconomics increasingly uses stochastic dynamic general equilibrium models to understand theoretical and policy issues. Unless very strong assumptions are made, understanding the properties of particular models requires solving the model using a computer. This volume brings together leading contributors in the field who explain in detail how to implement the computational techniques needed to solve dynamic economics models. A broad spread of techniques are covered, and their application in a wide range of subjects discussed. The book provides the basics of a toolkit which researchers and graduate students can use to solve and analyse their own theoretical models.
Book Synopsis Identification, Estimation and Testing of Conditionally Heteroskedastic Factor Models by : Gabriele Fiorentini
Download or read book Identification, Estimation and Testing of Conditionally Heteroskedastic Factor Models written by Gabriele Fiorentini and published by . This book was released on 2001 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: We investigate the effects of dynamic heteroskedasticity on statistical factor analysis. We show that identification problems are alleviated when variation in factor variances is accounted for. Our results apply to dynamic APT models and other structural models. We also find that traditional ML estimation of unconditional variance parameters remains consistent if the factor loadings are identified from the unconditional distribution, but their standard errors must be robustified. We develop a simple preliminary LM test for ARCH effects in the common factors, and discuss two-step consistent estimation of the conditional variance parameters. Finally, we conduct a detailed simulation exercise.
Book Synopsis Essays in Honour of Fabio Canova by : Juan J. Dolado
Download or read book Essays in Honour of Fabio Canova written by Juan J. Dolado and published by Emerald Group Publishing. This book was released on 2022-09-21 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Both parts of Volume 44 of Advances in Econometrics pay tribute to Fabio Canova for his major contributions to economics over the last four decades.
Book Synopsis Accelerating Monte Carlo methods for Bayesian inference in dynamical models by : Johan Dahlin
Download or read book Accelerating Monte Carlo methods for Bayesian inference in dynamical models written by Johan Dahlin and published by Linköping University Electronic Press. This book was released on 2016-03-22 with total page 139 pages. Available in PDF, EPUB and Kindle. Book excerpt: Making decisions and predictions from noisy observations are two important and challenging problems in many areas of society. Some examples of applications are recommendation systems for online shopping and streaming services, connecting genes with certain diseases and modelling climate change. In this thesis, we make use of Bayesian statistics to construct probabilistic models given prior information and historical data, which can be used for decision support and predictions. The main obstacle with this approach is that it often results in mathematical problems lacking analytical solutions. To cope with this, we make use of statistical simulation algorithms known as Monte Carlo methods to approximate the intractable solution. These methods enjoy well-understood statistical properties but are often computational prohibitive to employ. The main contribution of this thesis is the exploration of different strategies for accelerating inference methods based on sequential Monte Carlo (SMC) and Markov chain Monte Carlo (MCMC). That is, strategies for reducing the computational effort while keeping or improving the accuracy. A major part of the thesis is devoted to proposing such strategies for the MCMC method known as the particle Metropolis-Hastings (PMH) algorithm. We investigate two strategies: (i) introducing estimates of the gradient and Hessian of the target to better tailor the algorithm to the problem and (ii) introducing a positive correlation between the point-wise estimates of the target. Furthermore, we propose an algorithm based on the combination of SMC and Gaussian process optimisation, which can provide reasonable estimates of the posterior but with a significant decrease in computational effort compared with PMH. Moreover, we explore the use of sparseness priors for approximate inference in over-parametrised mixed effects models and autoregressive processes. This can potentially be a practical strategy for inference in the big data era. Finally, we propose a general method for increasing the accuracy of the parameter estimates in non-linear state space models by applying a designed input signal. Borde Riksbanken höja eller sänka reporäntan vid sitt nästa möte för att nå inflationsmålet? Vilka gener är förknippade med en viss sjukdom? Hur kan Netflix och Spotify veta vilka filmer och vilken musik som jag vill lyssna på härnäst? Dessa tre problem är exempel på frågor där statistiska modeller kan vara användbara för att ge hjälp och underlag för beslut. Statistiska modeller kombinerar teoretisk kunskap om exempelvis det svenska ekonomiska systemet med historisk data för att ge prognoser av framtida skeenden. Dessa prognoser kan sedan användas för att utvärdera exempelvis vad som skulle hända med inflationen i Sverige om arbetslösheten sjunker eller hur värdet på mitt pensionssparande förändras när Stockholmsbörsen rasar. Tillämpningar som dessa och många andra gör statistiska modeller viktiga för många delar av samhället. Ett sätt att ta fram statistiska modeller bygger på att kontinuerligt uppdatera en modell allteftersom mer information samlas in. Detta angreppssätt kallas för Bayesiansk statistik och är särskilt användbart när man sedan tidigare har bra insikter i modellen eller tillgång till endast lite historisk data för att bygga modellen. En nackdel med Bayesiansk statistik är att de beräkningar som krävs för att uppdatera modellen med den nya informationen ofta är mycket komplicerade. I sådana situationer kan man istället simulera utfallet från miljontals varianter av modellen och sedan jämföra dessa mot de historiska observationerna som finns till hands. Man kan sedan medelvärdesbilda över de varianter som gav bäst resultat för att på så sätt ta fram en slutlig modell. Det kan därför ibland ta dagar eller veckor för att ta fram en modell. Problemet blir särskilt stort när man använder mer avancerade modeller som skulle kunna ge bättre prognoser men som tar för lång tid för att bygga. I denna avhandling använder vi ett antal olika strategier för att underlätta eller förbättra dessa simuleringar. Vi föreslår exempelvis att ta hänsyn till fler insikter om systemet och därmed minska antalet varianter av modellen som behöver undersökas. Vi kan således redan utesluta vissa modeller eftersom vi har en bra uppfattning om ungefär hur en bra modell ska se ut. Vi kan också förändra simuleringen så att den enklare rör sig mellan olika typer av modeller. På detta sätt utforskas rymden av alla möjliga modeller på ett mer effektivt sätt. Vi föreslår ett antal olika kombinationer och förändringar av befintliga metoder för att snabba upp anpassningen av modellen till observationerna. Vi visar att beräkningstiden i vissa fall kan minska ifrån några dagar till någon timme. Förhoppningsvis kommer detta i framtiden leda till att man i praktiken kan använda mer avancerade modeller som i sin tur resulterar i bättre prognoser och beslut.
Book Synopsis Bayesian Statistics 6 by : J. M. Bernardo
Download or read book Bayesian Statistics 6 written by J. M. Bernardo and published by Oxford University Press. This book was released on 1999-08-12 with total page 886 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian statistics is a dynamic and fast-growing area of statistical research and the Valencia International Meetings provide the main forum for discussion. These resulting proceedings form an up-to-date collection of research.
Book Synopsis The Oxford Handbook of Economic Forecasting by : Michael P. Clements
Download or read book The Oxford Handbook of Economic Forecasting written by Michael P. Clements and published by OUP USA. This book was released on 2011-07-08 with total page 732 pages. Available in PDF, EPUB and Kindle. Book excerpt: Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.
Book Synopsis Bayesian Statistics 9 by : José M. Bernardo
Download or read book Bayesian Statistics 9 written by José M. Bernardo and published by Oxford University Press. This book was released on 2011-10-06 with total page 717 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian statistics is a dynamic and fast-growing area of statistical research and the Valencia International Meetings provide the main forum for discussion. These resulting proceedings form an up-to-date collection of research.
Book Synopsis Methods for Applied Macroeconomic Research by : Fabio Canova
Download or read book Methods for Applied Macroeconomic Research written by Fabio Canova and published by Princeton University Press. This book was released on 2011-09-19 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: The last twenty years have witnessed tremendous advances in the mathematical, statistical, and computational tools available to applied macroeconomists. This rapidly evolving field has redefined how researchers test models and validate theories. Yet until now there has been no textbook that unites the latest methods and bridges the divide between theoretical and applied work. Fabio Canova brings together dynamic equilibrium theory, data analysis, and advanced econometric and computational methods to provide the first comprehensive set of techniques for use by academic economists as well as professional macroeconomists in banking and finance, industry, and government. This graduate-level textbook is for readers knowledgeable in modern macroeconomic theory, econometrics, and computational programming using RATS, MATLAB, or Gauss. Inevitably a modern treatment of such a complex topic requires a quantitative perspective, a solid dynamic theory background, and the development of empirical and numerical methods--which is where Canova's book differs from typical graduate textbooks in macroeconomics and econometrics. Rather than list a series of estimators and their properties, Canova starts from a class of DSGE models, finds an approximate linear representation for the decision rules, and describes methods needed to estimate their parameters, examining their fit to the data. The book is complete with numerous examples and exercises. Today's economic analysts need a strong foundation in both theory and application. Methods for Applied Macroeconomic Research offers the essential tools for the next generation of macroeconomists.
Book Synopsis Structural Econometric Models by : Eugene Choo
Download or read book Structural Econometric Models written by Eugene Choo and published by Emerald Group Publishing. This book was released on 2013-12-18 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume focuses on recent developments in the use of structural econometric models in empirical economics. The first part looks at recent developments in the estimation of dynamic discrete choice models. The second part looks at recent advances in the area empirical matching models.
Book Synopsis Time Series Econometrics by : Pierre Perron
Download or read book Time Series Econometrics written by Pierre Perron and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Part I. Unit roots and trend breaks -- Part II. Structural change
Book Synopsis Designing a Simple Loss Function for Central Banks by : Davide Debortoli
Download or read book Designing a Simple Loss Function for Central Banks written by Davide Debortoli and published by International Monetary Fund. This book was released on 2017-07-21 with total page 56 pages. Available in PDF, EPUB and Kindle. Book excerpt: Yes, it makes a lot of sense. This paper studies how to design simple loss functions for central banks, as parsimonious approximations to social welfare. We show, both analytically and quantitatively, that simple loss functions should feature a high weight on measures of economic activity, sometimes even larger than the weight on inflation. Two main factors drive our result. First, stabilizing economic activity also stabilizes other welfare relevant variables. Second, the estimated model features mitigated inflation distortions due to a low elasticity of substitution between monopolistic goods and a low interest rate sensitivity of demand. The result holds up in the presence of measurement errors, with large shocks that generate a trade-off between stabilizing inflation and resource utilization, and also when ensuring a low probability of hitting the zero lower bound on interest rates.
Book Synopsis Handbook of Macroeconomics by : John B. Taylor
Download or read book Handbook of Macroeconomics written by John B. Taylor and published by North Holland. This book was released on 1999-12-13 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text aims to provide a survey of the state of knowledge in the broad area that includes the theories and facts of economic growth and economic fluctuations, as well as the consequences of monetary and fiscal policies for general economic conditions.
Book Synopsis Recent Econometric Techniques for Macroeconomic and Financial Data by : Gilles Dufrénot
Download or read book Recent Econometric Techniques for Macroeconomic and Financial Data written by Gilles Dufrénot and published by Springer Nature. This book was released on 2020-11-21 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a comprehensive overview of the latest econometric methods for studying the dynamics of macroeconomic and financial time series. It examines alternative methodological approaches and concepts, including quantile spectra and co-spectra, and explores topics such as non-linear and non-stationary behavior, stochastic volatility models, and the econometrics of commodity markets and globalization. Furthermore, it demonstrates the application of recent techniques in various fields: in the frequency domain, in the analysis of persistent dynamics, in the estimation of state space models and new classes of volatility models. The book is divided into two parts: The first part applies econometrics to the field of macroeconomics, discussing trend/cycle decomposition, growth analysis, monetary policy and international trade. The second part applies econometrics to a wide range of topics in financial economics, including price dynamics in equity, commodity and foreign exchange markets and portfolio analysis. The book is essential reading for scholars, students, and practitioners in government and financial institutions interested in applying recent econometric time series methods to financial and economic data.
Book Synopsis Bayesian Econometric Methods by : Joshua Chan
Download or read book Bayesian Econometric Methods written by Joshua Chan and published by Cambridge University Press. This book was released on 2019-08-15 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Illustrates Bayesian theory and application through a series of exercises in question and answer format.