Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Properties Of Linear Brownian Motion With Variable Drift
Download Properties Of Linear Brownian Motion With Variable Drift full books in PDF, epub, and Kindle. Read online Properties Of Linear Brownian Motion With Variable Drift ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Download or read book Brownian Motion written by Peter Mörters and published by Cambridge University Press. This book was released on 2010-03-25 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This eagerly awaited textbook covers everything the graduate student in probability wants to know about Brownian motion, as well as the latest research in the area. Starting with the construction of Brownian motion, the book then proceeds to sample path properties like continuity and nowhere differentiability. Notions of fractal dimension are introduced early and are used throughout the book to describe fine properties of Brownian paths. The relation of Brownian motion and random walk is explored from several viewpoints, including a development of the theory of Brownian local times from random walk embeddings. Stochastic integration is introduced as a tool and an accessible treatment of the potential theory of Brownian motion clears the path for an extensive treatment of intersections of Brownian paths. An investigation of exceptional points on the Brownian path and an appendix on SLE processes, by Oded Schramm and Wendelin Werner, lead directly to recent research themes.
Book Synopsis Brownian Motion and Stochastic Calculus by : Ioannis Karatzas
Download or read book Brownian Motion and Stochastic Calculus written by Ioannis Karatzas and published by Springer. This book was released on 2014-03-27 with total page 490 pages. Available in PDF, EPUB and Kindle. Book excerpt: A graduate-course text, written for readers familiar with measure-theoretic probability and discrete-time processes, wishing to explore stochastic processes in continuous time. The vehicle chosen for this exposition is Brownian motion, which is presented as the canonical example of both a martingale and a Markov process with continuous paths. In this context, the theory of stochastic integration and stochastic calculus is developed, illustrated by results concerning representations of martingales and change of measure on Wiener space, which in turn permit a presentation of recent advances in financial economics. The book contains a detailed discussion of weak and strong solutions of stochastic differential equations and a study of local time for semimartingales, with special emphasis on the theory of Brownian local time. The whole is backed by a large number of problems and exercises.
Book Synopsis Semigroups of Linear Operators by : David Applebaum
Download or read book Semigroups of Linear Operators written by David Applebaum and published by Cambridge University Press. This book was released on 2019-08-15 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a graduate-level introduction to the theory of semigroups of operators.
Book Synopsis Applied Stochastic Differential Equations by : Simo Särkkä
Download or read book Applied Stochastic Differential Equations written by Simo Särkkä and published by Cambridge University Press. This book was released on 2019-05-02 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.
Book Synopsis Introduction to Stochastic Calculus with Applications by : Fima C. Klebaner
Download or read book Introduction to Stochastic Calculus with Applications written by Fima C. Klebaner and published by Imperial College Press. This book was released on 2005 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a concise treatment of stochastic calculus and its applications. It gives a simple but rigorous treatment of the subject including a range of advanced topics, it is useful for practitioners who use advanced theoretical results. It covers advanced applications, such as models in mathematical finance, biology and engineering.Self-contained and unified in presentation, the book contains many solved examples and exercises. It may be used as a textbook by advanced undergraduates and graduate students in stochastic calculus and financial mathematics. It is also suitable for practitioners who wish to gain an understanding or working knowledge of the subject. For mathematicians, this book could be a first text on stochastic calculus; it is good companion to more advanced texts by a way of examples and exercises. For people from other fields, it provides a way to gain a working knowledge of stochastic calculus. It shows all readers the applications of stochastic calculus methods and takes readers to the technical level required in research and sophisticated modelling.This second edition contains a new chapter on bonds, interest rates and their options. New materials include more worked out examples in all chapters, best estimators, more results on change of time, change of measure, random measures, new results on exotic options, FX options, stochastic and implied volatility, models of the age-dependent branching process and the stochastic Lotka-Volterra model in biology, non-linear filtering in engineering and five new figures.Instructors can obtain slides of the text from the author.
Book Synopsis Brownian Motion Calculus by : Ubbo F. Wiersema
Download or read book Brownian Motion Calculus written by Ubbo F. Wiersema and published by John Wiley & Sons. This book was released on 2008-08-06 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brownian Motion Calculus presents the basics of Stochastic Calculus with a focus on the valuation of financial derivatives. It is intended as an accessible introduction to the technical literature. A clear distinction has been made between the mathematics that is convenient for a first introduction, and the more rigorous underpinnings which are best studied from the selected technical references. The inclusion of fully worked out exercises makes the book attractive for self study. Standard probability theory and ordinary calculus are the prerequisites. Summary slides for revision and teaching can be found on the book website.
Book Synopsis Brownian Motion, Martingales, and Stochastic Calculus by : Jean-François Le Gall
Download or read book Brownian Motion, Martingales, and Stochastic Calculus written by Jean-François Le Gall and published by Springer. This book was released on 2016-04-28 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a rigorous and self-contained presentation of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Itô’s formula, the optional stopping theorem and Girsanov’s theorem, are treated in detail alongside many illustrative examples. The book also contains an introduction to Markov processes, with applications to solutions of stochastic differential equations and to connections between Brownian motion and partial differential equations. The theory of local times of semimartingales is discussed in the last chapter. Since its invention by Itô, stochastic calculus has proven to be one of the most important techniques of modern probability theory, and has been used in the most recent theoretical advances as well as in applications to other fields such as mathematical finance. Brownian Motion, Martingales, and Stochastic Calculus provides a strong theoretical background to the reader interested in such developments. Beginning graduate or advanced undergraduate students will benefit from this detailed approach to an essential area of probability theory. The emphasis is on concise and efficient presentation, without any concession to mathematical rigor. The material has been taught by the author for several years in graduate courses at two of the most prestigious French universities. The fact that proofs are given with full details makes the book particularly suitable for self-study. The numerous exercises help the reader to get acquainted with the tools of stochastic calculus.
Book Synopsis Stochastic Processes and Applications by : Grigorios A. Pavliotis
Download or read book Stochastic Processes and Applications written by Grigorios A. Pavliotis and published by Springer. This book was released on 2014-11-19 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents various results and techniques from the theory of stochastic processes that are useful in the study of stochastic problems in the natural sciences. The main focus is analytical methods, although numerical methods and statistical inference methodologies for studying diffusion processes are also presented. The goal is the development of techniques that are applicable to a wide variety of stochastic models that appear in physics, chemistry and other natural sciences. Applications such as stochastic resonance, Brownian motion in periodic potentials and Brownian motors are studied and the connection between diffusion processes and time-dependent statistical mechanics is elucidated. The book contains a large number of illustrations, examples, and exercises. It will be useful for graduate-level courses on stochastic processes for students in applied mathematics, physics and engineering. Many of the topics covered in this book (reversible diffusions, convergence to equilibrium for diffusion processes, inference methods for stochastic differential equations, derivation of the generalized Langevin equation, exit time problems) cannot be easily found in textbook form and will be useful to both researchers and students interested in the applications of stochastic processes.
Book Synopsis Advances in Chemical Physics, Volume 128 by : Stuart A. Rice
Download or read book Advances in Chemical Physics, Volume 128 written by Stuart A. Rice and published by John Wiley & Sons. This book was released on 2004-01-20 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent advances from internationally recognized researchers Advances in Chemical Physics is the only series of volumes available to represent the cutting edge of research in the discipline. It creates a forum for critical, authoritative evaluations of advances in every area of the chemical physics field. Volume 128 continues to report recent developments with significant, up-to-date chapters by internationally recognized researchers. Volume 128 includes: "Nucleation in Polymer Crystallization," by M. Muthukumar; "Theory of Constrained Brownian Motion," by David C. Morse; "Superparamagnetism and Spin-glass Dynamics of Interacting Magnetic Nanoparticle Systems," by Petra E. Jönnson; "Wavepacket Theory of Photodissociation and Reactive Scattering," by Gabriel G. Balint-Kurti; and "The Momentum Density Perspective of the Electronic Structure of Atoms and Molecules," by Ajit J. Thakkar. Students and professionals in chemical physics and physical chemistry, as well as those working in the chemical, pharmaceutical, and polymer industries, will find Advances in Chemical Physics, Volume 128 to be an indispensable survey of the field.
Book Synopsis Stochastic-Process Limits by : Ward Whitt
Download or read book Stochastic-Process Limits written by Ward Whitt and published by Springer Science & Business Media. This book was released on 2006-04-11 with total page 616 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "The material is self-contained, but it is technical and a solid foundation in probability and queuing theory is beneficial to prospective readers. [... It] is intended to be accessible to those with less background. This book is a must to researchers and graduate students interested in these areas." ISI Short Book Reviews
Book Synopsis Stochastic Drawdowns by : Hongzhong Zhang
Download or read book Stochastic Drawdowns written by Hongzhong Zhang and published by World Scientific. This book was released on 2018-05-07 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic Drawdowns consists of some recent advances on Dr Hongzhong Zhang's own quantitative research of the well-known risk measures, drawdowns and maximum drawdowns. In this book, the author provides an extensive probabilistic study of different aspects of drawdown risks, which include the drawdown risk in finite time-horizons, the speed of market crashes (drawdowns), the frequency of drawdowns, the occupation time (time in distress), and the duration of drawdowns. Leveraging the knowledge in stochastic calculus, Lévy processes and optimal stopping, these topics can be considered as problems in advanced applied stochastic processes, and insurance/financial mathematics.The book also offers a number of applications of drawdowns in financial risk management, insurance, and algorithmic trading, including schemes on hedging and synthesizing of maximum drawdown options, (cancellable) drawdown insurance contracts and their fair premium, as well as optimal trading under drawdown-type constraints such as trailing stops.It is the goal of this book to offer a comprehensive characterization of drawdown risks and a handful of applications of drawdown in practice. On the one hand, the book enables interested students and researchers to learn the state-of-art probabilistic research on drawdowns, and explore new mathematical problems that are of practical importance to the financial industry. On the other hand, the book provides financial practitioners with access to a variety of analytically tractable measurements of drawdown risks, and the insight into hedging, optimal trading and execution amid challenges of these risks.
Book Synopsis An Introduction to Stochastic Differential Equations by : Lawrence C. Evans
Download or read book An Introduction to Stochastic Differential Equations written by Lawrence C. Evans and published by American Mathematical Soc.. This book was released on 2012-12-11 with total page 161 pages. Available in PDF, EPUB and Kindle. Book excerpt: These notes provide a concise introduction to stochastic differential equations and their application to the study of financial markets and as a basis for modeling diverse physical phenomena. They are accessible to non-specialists and make a valuable addition to the collection of texts on the topic. --Srinivasa Varadhan, New York University This is a handy and very useful text for studying stochastic differential equations. There is enough mathematical detail so that the reader can benefit from this introduction with only a basic background in mathematical analysis and probability. --George Papanicolaou, Stanford University This book covers the most important elementary facts regarding stochastic differential equations; it also describes some of the applications to partial differential equations, optimal stopping, and options pricing. The book's style is intuitive rather than formal, and emphasis is made on clarity. This book will be very helpful to starting graduate students and strong undergraduates as well as to others who want to gain knowledge of stochastic differential equations. I recommend this book enthusiastically. --Alexander Lipton, Mathematical Finance Executive, Bank of America Merrill Lynch This short book provides a quick, but very readable introduction to stochastic differential equations, that is, to differential equations subject to additive ``white noise'' and related random disturbances. The exposition is concise and strongly focused upon the interplay between probabilistic intuition and mathematical rigor. Topics include a quick survey of measure theoretic probability theory, followed by an introduction to Brownian motion and the Ito stochastic calculus, and finally the theory of stochastic differential equations. The text also includes applications to partial differential equations, optimal stopping problems and options pricing. This book can be used as a text for senior undergraduates or beginning graduate students in mathematics, applied mathematics, physics, financial mathematics, etc., who want to learn the basics of stochastic differential equations. The reader is assumed to be fairly familiar with measure theoretic mathematical analysis, but is not assumed to have any particular knowledge of probability theory (which is rapidly developed in Chapter 2 of the book).
Book Synopsis Elementary Stochastic Calculus, With Finance In View by : Thomas Mikosch
Download or read book Elementary Stochastic Calculus, With Finance In View written by Thomas Mikosch and published by World Scientific Publishing Company. This book was released on 1998-10-30 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modelling with the Itô integral or stochastic differential equations has become increasingly important in various applied fields, including physics, biology, chemistry and finance. However, stochastic calculus is based on a deep mathematical theory.This book is suitable for the reader without a deep mathematical background. It gives an elementary introduction to that area of probability theory, without burdening the reader with a great deal of measure theory. Applications are taken from stochastic finance. In particular, the Black-Scholes option pricing formula is derived. The book can serve as a text for a course on stochastic calculus for non-mathematicians or as elementary reading material for anyone who wants to learn about Itô calculus and/or stochastic finance.
Book Synopsis Continuous Martingales and Brownian Motion by : Daniel Revuz
Download or read book Continuous Martingales and Brownian Motion written by Daniel Revuz and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This is a magnificent book! Its purpose is to describe in considerable detail a variety of techniques used by probabilists in the investigation of problems concerning Brownian motion....This is THE book for a capable graduate student starting out on research in probability: the effect of working through it is as if the authors are sitting beside one, enthusiastically explaining the theory, presenting further developments as exercises." –BULLETIN OF THE L.M.S.
Book Synopsis Optimal Stopping and Free-Boundary Problems by : Goran Peskir
Download or read book Optimal Stopping and Free-Boundary Problems written by Goran Peskir and published by Springer Science & Business Media. This book was released on 2006-11-10 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discloses a fascinating connection between optimal stopping problems in probability and free-boundary problems. It focuses on key examples and the theory of optimal stopping is exposed at its basic principles in discrete and continuous time covering martingale and Markovian methods. Methods of solution explained range from change of time, space, and measure, to more recent ones such as local time-space calculus and nonlinear integral equations. A chapter on stochastic processes makes the material more accessible. The book will appeal to those wishing to master stochastic calculus via fundamental examples. Areas of application include financial mathematics, financial engineering, and mathematical statistics.
Book Synopsis Handbook of the Geometry of Banach Spaces by :
Download or read book Handbook of the Geometry of Banach Spaces written by and published by Elsevier. This book was released on 2001-08-15 with total page 1017 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook presents an overview of most aspects of modernBanach space theory and its applications. The up-to-date surveys, authored by leading research workers in the area, are written to be accessible to a wide audience. In addition to presenting the state of the art of Banach space theory, the surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory, and partial differential equations. The Handbook begins with a chapter on basic concepts in Banachspace theory which contains all the background needed for reading any other chapter in the Handbook. Each of the twenty one articles in this volume after the basic concepts chapter is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods, and open problems in its specific direction. Most have an extensive bibliography. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. As well as being valuable to experienced researchers in Banach space theory, the Handbook should be an outstanding source for inspiration and information to graduate students and beginning researchers. The Handbook will be useful for mathematicians who want to get an idea of the various developments in Banach space theory.
Book Synopsis Exponential Functionals of Brownian Motion and Related Processes by : Marc Yor
Download or read book Exponential Functionals of Brownian Motion and Related Processes written by Marc Yor and published by Springer Science & Business Media. This book was released on 2001-08-14 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects papers about the laws of geometric Brownian motions and their time-integrals, written by the author and coauthors between 1988 and 1998. Throughout the volume, connections with more recent studies involving exponential functionals of Lévy processes are indicated. Some papers originally published in French are made available in English for the first time.