Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Proofs Of The Cantor Bernstein Theorem
Download Proofs Of The Cantor Bernstein Theorem full books in PDF, epub, and Kindle. Read online Proofs Of The Cantor Bernstein Theorem ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Proofs of the Cantor-Bernstein Theorem by : Arie Hinkis
Download or read book Proofs of the Cantor-Bernstein Theorem written by Arie Hinkis and published by Springer Science & Business Media. This book was released on 2013-02-26 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an excursion through the developmental area of research mathematics. It presents some 40 papers, published between the 1870s and the 1970s, on proofs of the Cantor-Bernstein theorem and the related Bernstein division theorem. While the emphasis is placed on providing accurate proofs, similar to the originals, the discussion is broadened to include aspects that pertain to the methodology of the development of mathematics and to the philosophy of mathematics. Works of prominent mathematicians and logicians are reviewed, including Cantor, Dedekind, Schröder, Bernstein, Borel, Zermelo, Poincaré, Russell, Peano, the Königs, Hausdorff, Sierpinski, Tarski, Banach, Brouwer and several others mainly of the Polish and the Dutch schools. In its attempt to present a diachronic narrative of one mathematical topic, the book resembles Lakatos’ celebrated book Proofs and Refutations. Indeed, some of the observations made by Lakatos are corroborated herein. The analogy between the two books is clearly anything but superficial, as the present book also offers new theoretical insights into the methodology of the development of mathematics (proof-processing), with implications for the historiography of mathematics.
Book Synopsis Basic Set Theory by : Nikolai Konstantinovich Vereshchagin
Download or read book Basic Set Theory written by Nikolai Konstantinovich Vereshchagin and published by American Mathematical Soc.. This book was released on 2002 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main notions of set theory (cardinals, ordinals, transfinite induction) are fundamental to all mathematicians, not only to those who specialize in mathematical logic or set-theoretic topology. Basic set theory is generally given a brief overview in courses on analysis, algebra, or topology, even though it is sufficiently important, interesting, and simple to merit its own leisurely treatment. This book provides just that: a leisurely exposition for a diversified audience. It is suitable for a broad range of readers, from undergraduate students to professional mathematicians who want to finally find out what transfinite induction is and why it is always replaced by Zorn's Lemma. The text introduces all main subjects of ``naive'' (nonaxiomatic) set theory: functions, cardinalities, ordered and well-ordered sets, transfinite induction and its applications, ordinals, and operations on ordinals. Included are discussions and proofs of the Cantor-Bernstein Theorem, Cantor's diagonal method, Zorn's Lemma, Zermelo's Theorem, and Hamel bases. With over 150 problems, the book is a complete and accessible introduction to the subject.
Book Synopsis How to Prove It by : Daniel J. Velleman
Download or read book How to Prove It written by Daniel J. Velleman and published by Cambridge University Press. This book was released on 2006-01-16 with total page 401 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many students have trouble the first time they take a mathematics course in which proofs play a significant role. This new edition of Velleman's successful text will prepare students to make the transition from solving problems to proving theorems by teaching them the techniques needed to read and write proofs. The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. The author shows how complex proofs are built up from these smaller steps, using detailed 'scratch work' sections to expose the machinery of proofs about the natural numbers, relations, functions, and infinite sets. To give students the opportunity to construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. This book will be useful to anyone interested in logic and proofs: computer scientists, philosophers, linguists, and of course mathematicians.
Book Synopsis Proofs from THE BOOK by : Martin Aigner
Download or read book Proofs from THE BOOK written by Martin Aigner and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: According to the great mathematician Paul Erdös, God maintains perfect mathematical proofs in The Book. This book presents the authors candidates for such "perfect proofs," those which contain brilliant ideas, clever connections, and wonderful observations, bringing new insight and surprising perspectives to problems from number theory, geometry, analysis, combinatorics, and graph theory. As a result, this book will be fun reading for anyone with an interest in mathematics.
Book Synopsis Reading, Writing, and Proving by : Ulrich Daepp
Download or read book Reading, Writing, and Proving written by Ulrich Daepp and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, based on Pólya's method of problem solving, aids students in their transition to higher-level mathematics. It begins by providing a great deal of guidance on how to approach definitions, examples, and theorems in mathematics and ends by providing projects for independent study. Students will follow Pólya's four step process: learn to understand the problem; devise a plan to solve the problem; carry out that plan; and look back and check what the results told them.
Book Synopsis Homotopy Type Theory: Univalent Foundations of Mathematics by :
Download or read book Homotopy Type Theory: Univalent Foundations of Mathematics written by and published by Univalent Foundations. This book was released on with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Book of Proof by : Richard H. Hammack
Download or read book Book of Proof written by Richard H. Hammack and published by . This book was released on 2016-01-01 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to the language and standard proof methods of mathematics. It is a bridge from the computational courses (such as calculus or differential equations) that students typically encounter in their first year of college to a more abstract outlook. It lays a foundation for more theoretical courses such as topology, analysis and abstract algebra. Although it may be more meaningful to the student who has had some calculus, there is really no prerequisite other than a measure of mathematical maturity.
Book Synopsis Gallery of the Infinite by : Richard Evan Schwartz
Download or read book Gallery of the Infinite written by Richard Evan Schwartz and published by American Mathematical Soc.. This book was released on 2016-11-17 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gallery of the Infinite is a mathematician's unique view of the infinitely many sizes of infinity. Written in a playful yet informative style, it introduces important concepts from set theory (including the Cantor Diagonalization Method and the Cantor-Bernstein Theorem) using colorful pictures, with little text and almost no formulas. It requires no specialized background and is suitable for anyone with an interest in the infinite, from advanced middle-school students to inquisitive adults.
Book Synopsis Introduction to Set Theory by : Karel Hrbacek
Download or read book Introduction to Set Theory written by Karel Hrbacek and published by . This book was released on 1984 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Proofs and Ideas written by B. Sethuraman and published by American Mathematical Society. This book was released on 2021-12-02 with total page 334 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proofs and Ideas serves as a gentle introduction to advanced mathematics for students who previously have not had extensive exposure to proofs. It is intended to ease the student's transition from algorithmic mathematics to the world of mathematics that is built around proofs and concepts. The spirit of the book is that the basic tools of abstract mathematics are best developed in context and that creativity and imagination are at the core of mathematics. So, while the book has chapters on statements and sets and functions and induction, the bulk of the book focuses on core mathematical ideas and on developing intuition. Along with chapters on elementary combinatorics and beginning number theory, this book contains introductory chapters on real analysis, group theory, and graph theory that serve as gentle first exposures to their respective areas. The book contains hundreds of exercises, both routine and non-routine. This book has been used for a transition to advanced mathematics courses at California State University, Northridge, as well as for a general education course on mathematical reasoning at Krea University, India.
Book Synopsis Zermelo’s Axiom of Choice by : G.H. Moore
Download or read book Zermelo’s Axiom of Choice written by G.H. Moore and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 425 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew out of my interest in what is common to three disciplines: mathematics, philosophy, and history. The origins of Zermelo's Axiom of Choice, as well as the controversy that it engendered, certainly lie in that intersection. Since the time of Aristotle, mathematics has been concerned alternately with its assumptions and with the objects, such as number and space, about which those assumptions were made. In the historical context of Zermelo's Axiom, I have explored both the vagaries and the fertility of this alternating concern. Though Zermelo's research has provided the focus for this book, much of it is devoted to the problems from which his work originated and to the later developments which, directly or indirectly, he inspired. A few remarks about format are in order. In this book a publication is indicated by a date after a name; so Hilbert 1926, 178 refers to page 178 of an article written by Hilbert, published in 1926, and listed in the bibliography.
Book Synopsis Set Theory: An Introduction by : Robert L. Vaught
Download or read book Set Theory: An Introduction written by Robert L. Vaught and published by Springer Science & Business Media. This book was released on 2001-08-28 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt: By its nature, set theory does not depend on any previous mathematical knowl edge. Hence, an individual wanting to read this book can best find out if he is ready to do so by trying to read the first ten or twenty pages of Chapter 1. As a textbook, the book can serve for a course at the junior or senior level. If a course covers only some of the chapters, the author hopes that the student will read the rest himself in the next year or two. Set theory has always been a sub ject which people find pleasant to study at least partly by themselves. Chapters 1-7, or perhaps 1-8, present the core of the subject. (Chapter 8 is a short, easy discussion of the axiom of regularity). Even a hurried course should try to cover most of this core (of which more is said below). Chapter 9 presents the logic needed for a fully axiomatic set th~ory and especially for independence or consistency results. Chapter 10 gives von Neumann's proof of the relative consistency of the regularity axiom and three similar related results. Von Neumann's 'inner model' proof is easy to grasp and yet it prepares one for the famous and more difficult work of GOdel and Cohen, which are the main topics of any book or course in set theory at the next level.
Book Synopsis Principia Mathematica by : Alfred North Whitehead
Download or read book Principia Mathematica written by Alfred North Whitehead and published by . This book was released on 1910 with total page 688 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Introductory Real Analysis by : A. N. Kolmogorov
Download or read book Introductory Real Analysis written by A. N. Kolmogorov and published by Courier Corporation. This book was released on 1975-06-01 with total page 418 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive, elementary introduction to real and functional analysis covers basic concepts and introductory principles in set theory, metric spaces, topological and linear spaces, linear functionals and linear operators, more. 1970 edition.
Book Synopsis Sets and integration An outline of the development by : D. van Dalen
Download or read book Sets and integration An outline of the development written by D. van Dalen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present text resulted from lectures given by the authors at the Rijks Universiteit at Utrecht. These lectures were part of a series on 'History of Contemporary Mathematics'. The need for such an enterprise was generally felt, since the curriculum at many universities is designed to suit an efficient treatment of advanced subjects rather than to reflect the development of notions and techniques. As it is very likely that this trend will continue, we decided to offer lectures of a less technical nature to provide students and interested listeners with a survey of the history of topics in our present-day mathematics. We consider it very useful for a mathematician to have an acquaintance with the history of the development of his subject, especially in the nineteenth century where the germs of many of modern disciplines can be found. Our attention has therefore been mainly directed to relatively young developments. In the lectures we tried to stay clear of both oversimplification and extreme technicality. The result is a text, that should not cause difficulties to a reader with a working knowledge of mathematics. The developments sketched in this book are fundamental for many areas in mathematics and the notions considered are crucial almost everywhere. The book may be most useful, in particular, for those teaching mathematics.
Book Synopsis Proofs and Fundamentals by : Ethan D. Bloch
Download or read book Proofs and Fundamentals written by Ethan D. Bloch and published by Springer Science & Business Media. This book was released on 2011-02-15 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: “Proofs and Fundamentals: A First Course in Abstract Mathematics” 2nd edition is designed as a "transition" course to introduce undergraduates to the writing of rigorous mathematical proofs, and to such fundamental mathematical ideas as sets, functions, relations, and cardinality. The text serves as a bridge between computational courses such as calculus, and more theoretical, proofs-oriented courses such as linear algebra, abstract algebra and real analysis. This 3-part work carefully balances Proofs, Fundamentals, and Extras. Part 1 presents logic and basic proof techniques; Part 2 thoroughly covers fundamental material such as sets, functions and relations; and Part 3 introduces a variety of extra topics such as groups, combinatorics and sequences. A gentle, friendly style is used, in which motivation and informal discussion play a key role, and yet high standards in rigor and in writing are never compromised. New to the second edition: 1) A new section about the foundations of set theory has been added at the end of the chapter about sets. This section includes a very informal discussion of the Zermelo– Fraenkel Axioms for set theory. We do not make use of these axioms subsequently in the text, but it is valuable for any mathematician to be aware that an axiomatic basis for set theory exists. Also included in this new section is a slightly expanded discussion of the Axiom of Choice, and new discussion of Zorn's Lemma, which is used later in the text. 2) The chapter about the cardinality of sets has been rearranged and expanded. There is a new section at the start of the chapter that summarizes various properties of the set of natural numbers; these properties play important roles subsequently in the chapter. The sections on induction and recursion have been slightly expanded, and have been relocated to an earlier place in the chapter (following the new section), both because they are more concrete than the material found in the other sections of the chapter, and because ideas from the sections on induction and recursion are used in the other sections. Next comes the section on the cardinality of sets (which was originally the first section of the chapter); this section gained proofs of the Schroeder–Bernstein theorem and the Trichotomy Law for Sets, and lost most of the material about finite and countable sets, which has now been moved to a new section devoted to those two types of sets. The chapter concludes with the section on the cardinality of the number systems. 3) The chapter on the construction of the natural numbers, integers and rational numbers from the Peano Postulates was removed entirely. That material was originally included to provide the needed background about the number systems, particularly for the discussion of the cardinality of sets, but it was always somewhat out of place given the level and scope of this text. The background material about the natural numbers needed for the cardinality of sets has now been summarized in a new section at the start of that chapter, making the chapter both self-contained and more accessible than it previously was. 4) The section on families of sets has been thoroughly revised, with the focus being on families of sets in general, not necessarily thought of as indexed. 5) A new section about the convergence of sequences has been added to the chapter on selected topics. This new section, which treats a topic from real analysis, adds some diversity to the chapter, which had hitherto contained selected topics of only an algebraic or combinatorial nature. 6) A new section called ``You Are the Professor'' has been added to the end of the last chapter. This new section, which includes a number of attempted proofs taken from actual homework exercises submitted by students, offers the reader the opportunity to solidify her facility for writing proofs by critiquing these submissions as if she were the instructor for the course. 7) All known errors have been corrected. 8) Many minor adjustments of wording have been made throughout the text, with the hope of improving the exposition.
Download or read book Probability written by Rick Durrett and published by Cambridge University Press. This book was released on 2010-08-30 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.