Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Principles Of Data Management
Download Principles Of Data Management full books in PDF, epub, and Kindle. Read online Principles Of Data Management ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Principles of Data Management by : Keith Gordon
Download or read book Principles of Data Management written by Keith Gordon and published by BCS, The Chartered Institute for IT. This book was released on 2013-11-18 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data is a valuable corporate asset and its effective management can be vital to an organisation’s success. This professional guide covers all the key areas of data management, including database development and corporate data modelling. It is business-focused, providing the knowledge and techniques required to successfully implement the data management function. This new edition covers web technology and its relation to databases and includes material on the management of master data.
Book Synopsis Principles of Database Management by : Wilfried Lemahieu
Download or read book Principles of Database Management written by Wilfried Lemahieu and published by Cambridge University Press. This book was released on 2018-07-12 with total page 817 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introductory, theory-practice balanced text teaching the fundamentals of databases to advanced undergraduates or graduate students in information systems or computer science.
Book Synopsis Principles of Data Management and Presentation by : John P. Hoffmann
Download or read book Principles of Data Management and Presentation written by John P. Hoffmann and published by Univ of California Press. This book was released on 2017-07-03 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Why research? -- Developing research questions -- Data -- Principles of data management -- Finding and using secondary data -- Primary and administrative data -- Working with missing data -- Principles of data presentation -- Designing tables for data presentations -- Designing graphics for data presentations
Book Synopsis Big Data Management by : Peter Ghavami
Download or read book Big Data Management written by Peter Ghavami and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-11-09 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data analytics is core to business and decision making. The rapid increase in data volume, velocity and variety offers both opportunities and challenges. While open source solutions to store big data, like Hadoop, offer platforms for exploring value and insight from big data, they were not originally developed with data security and governance in mind. Big Data Management discusses numerous policies, strategies and recipes for managing big data. It addresses data security, privacy, controls and life cycle management offering modern principles and open source architectures for successful governance of big data. The author has collected best practices from the world’s leading organizations that have successfully implemented big data platforms. The topics discussed cover the entire data management life cycle, data quality, data stewardship, regulatory considerations, data council, architectural and operational models are presented for successful management of big data. The book is a must-read for data scientists, data engineers and corporate leaders who are implementing big data platforms in their organizations.
Book Synopsis Principles of Data Integration by : AnHai Doan
Download or read book Principles of Data Integration written by AnHai Doan and published by Elsevier. This book was released on 2012-06-25 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: Principles of Data Integration is the first comprehensive textbook of data integration, covering theoretical principles and implementation issues as well as current challenges raised by the semantic web and cloud computing. The book offers a range of data integration solutions enabling you to focus on what is most relevant to the problem at hand. Readers will also learn how to build their own algorithms and implement their own data integration application. Written by three of the most respected experts in the field, this book provides an extensive introduction to the theory and concepts underlying today's data integration techniques, with detailed, instruction for their application using concrete examples throughout to explain the concepts. This text is an ideal resource for database practitioners in industry, including data warehouse engineers, database system designers, data architects/enterprise architects, database researchers, statisticians, and data analysts; students in data analytics and knowledge discovery; and other data professionals working at the R&D and implementation levels. - Offers a range of data integration solutions enabling you to focus on what is most relevant to the problem at hand - Enables you to build your own algorithms and implement your own data integration applications
Book Synopsis Non-Invasive Data Governance by : Robert S. Seiner
Download or read book Non-Invasive Data Governance written by Robert S. Seiner and published by Technics Publications. This book was released on 2014-09-01 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data-governance programs focus on authority and accountability for the management of data as a valued organizational asset. Data Governance should not be about command-and-control, yet at times could become invasive or threatening to the work, people and culture of an organization. Non-Invasive Data Governance™ focuses on formalizing existing accountability for the management of data and improving formal communications, protection, and quality efforts through effective stewarding of data resources. Non-Invasive Data Governance will provide you with a complete set of tools to help you deliver a successful data governance program. Learn how: • Steward responsibilities can be identified and recognized, formalized, and engaged according to their existing responsibility rather than being assigned or handed to people as more work. • Governance of information can be applied to existing policies, standard operating procedures, practices, and methodologies, rather than being introduced or emphasized as new processes or methods. • Governance of information can support all data integration, risk management, business intelligence and master data management activities rather than imposing inconsistent rigor to these initiatives. • A practical and non-threatening approach can be applied to governing information and promoting stewardship of data as a cross-organization asset. • Best practices and key concepts of this non-threatening approach can be communicated effectively to leverage strengths and address opportunities to improve.
Book Synopsis Advanced Data Management by : Lena Wiese
Download or read book Advanced Data Management written by Lena Wiese and published by Walter de Gruyter GmbH & Co KG. This book was released on 2015-10-29 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advanced data management has always been at the core of efficient database and information systems. Recent trends like big data and cloud computing have aggravated the need for sophisticated and flexible data storage and processing solutions. This book provides a comprehensive coverage of the principles of data management developed in the last decades with a focus on data structures and query languages. It treats a wealth of different data models and surveys the foundations of structuring, processing, storing and querying data according these models. Starting off with the topic of database design, it further discusses weaknesses of the relational data model, and then proceeds to convey the basics of graph data, tree-structured XML data, key-value pairs and nested, semi-structured JSON data, columnar and record-oriented data as well as object-oriented data. The final chapters round the book off with an analysis of fragmentation, replication and consistency strategies for data management in distributed databases as well as recommendations for handling polyglot persistence in multi-model databases and multi-database architectures. While primarily geared towards students of Master-level courses in Computer Science and related areas, this book may also be of benefit to practitioners looking for a reference book on data modeling and query processing. It provides both theoretical depth and a concise treatment of open source technologies currently on the market.
Book Synopsis Data Management at Scale by : Piethein Strengholt
Download or read book Data Management at Scale written by Piethein Strengholt and published by "O'Reilly Media, Inc.". This book was released on 2020-07-29 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: As data management and integration continue to evolve rapidly, storing all your data in one place, such as a data warehouse, is no longer scalable. In the very near future, data will need to be distributed and available for several technological solutions. With this practical book, you’ll learnhow to migrate your enterprise from a complex and tightly coupled data landscape to a more flexible architecture ready for the modern world of data consumption. Executives, data architects, analytics teams, and compliance and governance staff will learn how to build a modern scalable data landscape using the Scaled Architecture, which you can introduce incrementally without a large upfront investment. Author Piethein Strengholt provides blueprints, principles, observations, best practices, and patterns to get you up to speed. Examine data management trends, including technological developments, regulatory requirements, and privacy concerns Go deep into the Scaled Architecture and learn how the pieces fit together Explore data governance and data security, master data management, self-service data marketplaces, and the importance of metadata
Book Synopsis Principles of Data-base Management by : James Martin
Download or read book Principles of Data-base Management written by James Martin and published by Prentice Hall. This book was released on 1976 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Textbook on principles of computer data base management - covers data organization, data base software, (incl. Languages), data protection, confidentiality and privacy, information quality, management information systems, technical aspects, etc. Bibliography pp. 341 to 344, diagrams, flow charts and glossary.
Download or read book Database Tuning written by Dennis Shasha and published by Elsevier. This book was released on 2002-06-07 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tuning your database for optimal performance means more than following a few short steps in a vendor-specific guide. For maximum improvement, you need a broad and deep knowledge of basic tuning principles, the ability to gather data in a systematic way, and the skill to make your system run faster. This is an art as well as a science, and Database Tuning: Principles, Experiments, and Troubleshooting Techniques will help you develop portable skills that will allow you to tune a wide variety of database systems on a multitude of hardware and operating systems. Further, these skills, combined with the scripts provided for validating results, are exactly what you need to evaluate competing database products and to choose the right one. - Forward by Jim Gray, with invited chapters by Joe Celko and Alberto Lerner - Includes industrial contributions by Bill McKenna (RedBrick/Informix), Hany Saleeb (Oracle), Tim Shetler (TimesTen), Judy Smith (Deutsche Bank), and Ron Yorita (IBM) - Covers the entire system environment: hardware, operating system, transactions, indexes, queries, table design, and application analysis - Contains experiments (scripts available on the author's site) to help you verify a system's effectiveness in your own environment - Presents special topics, including data warehousing, Web support, main memory databases, specialized databases, and financial time series - Describes performance-monitoring techniques that will help you recognize and troubleshoot problems
Book Synopsis Data Management for Researchers by : Kristin Briney
Download or read book Data Management for Researchers written by Kristin Briney and published by Pelagic Publishing Ltd. This book was released on 2015-09-01 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive guide to everything scientists need to know about data management, this book is essential for researchers who need to learn how to organize, document and take care of their own data. Researchers in all disciplines are faced with the challenge of managing the growing amounts of digital data that are the foundation of their research. Kristin Briney offers practical advice and clearly explains policies and principles, in an accessible and in-depth text that will allow researchers to understand and achieve the goal of better research data management. Data Management for Researchers includes sections on: * The data problem – an introduction to the growing importance and challenges of using digital data in research. Covers both the inherent problems with managing digital information, as well as how the research landscape is changing to give more value to research datasets and code. * The data lifecycle – a framework for data’s place within the research process and how data’s role is changing. Greater emphasis on data sharing and data reuse will not only change the way we conduct research but also how we manage research data. * Planning for data management – covers the many aspects of data management and how to put them together in a data management plan. This section also includes sample data management plans. * Documenting your data – an often overlooked part of the data management process, but one that is critical to good management; data without documentation are frequently unusable. * Organizing your data – explains how to keep your data in order using organizational systems and file naming conventions. This section also covers using a database to organize and analyze content. * Improving data analysis – covers managing information through the analysis process. This section starts by comparing the management of raw and analyzed data and then describes ways to make analysis easier, such as spreadsheet best practices. It also examines practices for research code, including version control systems. * Managing secure and private data – many researchers are dealing with data that require extra security. This section outlines what data falls into this category and some of the policies that apply, before addressing the best practices for keeping data secure. * Short-term storage – deals with the practical matters of storage and backup and covers the many options available. This section also goes through the best practices to insure that data are not lost. * Preserving and archiving your data – digital data can have a long life if properly cared for. This section covers managing data in the long term including choosing good file formats and media, as well as determining who will manage the data after the end of the project. * Sharing/publishing your data – addresses how to make data sharing across research groups easier, as well as how and why to publicly share data. This section covers intellectual property and licenses for datasets, before ending with the altmetrics that measure the impact of publicly shared data. * Reusing data – as more data are shared, it becomes possible to use outside data in your research. This chapter discusses strategies for finding datasets and lays out how to cite data once you have found it. This book is designed for active scientific researchers but it is useful for anyone who wants to get more from their data: academics, educators, professionals or anyone who teaches data management, sharing and preservation. "An excellent practical treatise on the art and practice of data management, this book is essential to any researcher, regardless of subject or discipline." —Robert Buntrock, Chemical Information Bulletin
Book Synopsis Principles of Distributed Database Systems by : M. Tamer Özsu
Download or read book Principles of Distributed Database Systems written by M. Tamer Özsu and published by Springer Science & Business Media. This book was released on 2011-02-24 with total page 856 pages. Available in PDF, EPUB and Kindle. Book excerpt: This third edition of a classic textbook can be used to teach at the senior undergraduate and graduate levels. The material concentrates on fundamental theories as well as techniques and algorithms. The advent of the Internet and the World Wide Web, and, more recently, the emergence of cloud computing and streaming data applications, has forced a renewal of interest in distributed and parallel data management, while, at the same time, requiring a rethinking of some of the traditional techniques. This book covers the breadth and depth of this re-emerging field. The coverage consists of two parts. The first part discusses the fundamental principles of distributed data management and includes distribution design, data integration, distributed query processing and optimization, distributed transaction management, and replication. The second part focuses on more advanced topics and includes discussion of parallel database systems, distributed object management, peer-to-peer data management, web data management, data stream systems, and cloud computing. New in this Edition: • New chapters, covering database replication, database integration, multidatabase query processing, peer-to-peer data management, and web data management. • Coverage of emerging topics such as data streams and cloud computing • Extensive revisions and updates based on years of class testing and feedback Ancillary teaching materials are available.
Book Synopsis Managing Environmental Data by : Gerald A. Burnette
Download or read book Managing Environmental Data written by Gerald A. Burnette and published by CRC Press. This book was released on 2021-12-21 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focused on the mechanics of managing environmental data, this book provides guidelines on how to evaluate data requirements, assess tools and techniques, and implement an effective system. Moving beyond the hypothetical, Gerald Burnette illustrates the decision-making processes and the compromises required when applying environmental principles and practices to actual data. Managing Environmental Data explains the basic principles of relational databases, discusses database design, explores user interface options, and examines the process of implementation. Best practices are identified during each portion of the process. The discussion is summarized via the development of a hypothetical environmental data management system. Details of the design help establish a common framework that bridges the gap between data managers, users, and software developers. It is an ideal text for environmental professionals and students. The growth in both volume and complexity of environmental data presents challenges to environmental professionals. Developing better data management skills offers an excellent opportunity to meet these challenges. Gaining knowledge of and experience with data management best practices complements students’ more traditional science education, providing them with the skills required to address complex data requirements.
Book Synopsis Enterprise Master Data Management by : Allen Dreibelbis
Download or read book Enterprise Master Data Management written by Allen Dreibelbis and published by Pearson Education. This book was released on 2008-06-05 with total page 833 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Only Complete Technical Primer for MDM Planners, Architects, and Implementers Companies moving toward flexible SOA architectures often face difficult information management and integration challenges. The master data they rely on is often stored and managed in ways that are redundant, inconsistent, inaccessible, non-standardized, and poorly governed. Using Master Data Management (MDM), organizations can regain control of their master data, improve corresponding business processes, and maximize its value in SOA environments. Enterprise Master Data Management provides an authoritative, vendor-independent MDM technical reference for practitioners: architects, technical analysts, consultants, solution designers, and senior IT decisionmakers. Written by the IBM ® data management innovators who are pioneering MDM, this book systematically introduces MDM’s key concepts and technical themes, explains its business case, and illuminates how it interrelates with and enables SOA. Drawing on their experience with cutting-edge projects, the authors introduce MDM patterns, blueprints, solutions, and best practices published nowhere else—everything you need to establish a consistent, manageable set of master data, and use it for competitive advantage. Coverage includes How MDM and SOA complement each other Using the MDM Reference Architecture to position and design MDM solutions within an enterprise Assessing the value and risks to master data and applying the right security controls Using PIM-MDM and CDI-MDM Solution Blueprints to address industry-specific information management challenges Explaining MDM patterns as enablers to accelerate consistent MDM deployments Incorporating MDM solutions into existing IT landscapes via MDM Integration Blueprints Leveraging master data as an enterprise asset—bringing people, processes, and technology together with MDM and data governance Best practices in MDM deployment, including data warehouse and SAP integration
Download or read book DAMA-DMBOK written by Dama International and published by . This book was released on 2017 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt: Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment.
Book Synopsis Principles of Big Data by : Jules J. Berman
Download or read book Principles of Big Data written by Jules J. Berman and published by Newnes. This book was released on 2013-05-20 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Principles of Big Data helps readers avoid the common mistakes that endanger all Big Data projects. By stressing simple, fundamental concepts, this book teaches readers how to organize large volumes of complex data, and how to achieve data permanence when the content of the data is constantly changing. General methods for data verification and validation, as specifically applied to Big Data resources, are stressed throughout the book. The book demonstrates how adept analysts can find relationships among data objects held in disparate Big Data resources, when the data objects are endowed with semantic support (i.e., organized in classes of uniquely identified data objects). Readers will learn how their data can be integrated with data from other resources, and how the data extracted from Big Data resources can be used for purposes beyond those imagined by the data creators. - Learn general methods for specifying Big Data in a way that is understandable to humans and to computers - Avoid the pitfalls in Big Data design and analysis - Understand how to create and use Big Data safely and responsibly with a set of laws, regulations and ethical standards that apply to the acquisition, distribution and integration of Big Data resources
Book Synopsis Big Data Governance by : Peter Ghavami, Ph.d.
Download or read book Big Data Governance written by Peter Ghavami, Ph.d. and published by Createspace Independent Publishing Platform. This book was released on 2015-11-26 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data is the new Gold and Analytics is the machinery to mine, mold and mint it. Data analytics has become core to business and decision making. The rapid increase in data volume, velocity and variety, known as big data, offers both opportunities and challenges. While open source solutions to store big data, like Hadoop and NoSQL offer platforms for exploring value and insight from big data, they were not originally developed with data security and governance in mind. Organizations that are launching big data initiatives face significant challenges for managing this data effectively. In this book, the author has collected best practices from the world's leading organizations who have successfully implemented big data platforms. He offers the latest techniques and methods for managing big data effectively. The book offers numerous policies, strategies and recipes for managing big data. It addresses many issues that are prevalent with data security, privacy, controls and life cycle management offering modern principles and open source architectures for successful governance of big data. Topics that cover the entire data management life cycle, data quality, data stewardship, regulatory considerations, data council, architectural and operational models are presented for successful management of big data. The book is a must-read for data scientists, data engineers and information technology leaders who are implementing big data platforms in their organizations.