AGR-1 Post Irradiation Examination Final Report

Download AGR-1 Post Irradiation Examination Final Report PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 132 pages
Book Rating : 4.:/5 (94 download)

DOWNLOAD NOW!


Book Synopsis AGR-1 Post Irradiation Examination Final Report by :

Download or read book AGR-1 Post Irradiation Examination Final Report written by and published by . This book was released on 2015 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: The post-irradiation examination (PIE) of the Advanced Gas Reactor (AGR)-1 experiment was a multi-year, collaborative effort between Idaho National Laboratory (INL) and Oak Ridge National Laboratory (ORNL) to study the performance of UCO (uranium carbide, uranium oxide) tristructural isotropic (TRISO) coated particle fuel fabricated in the U.S. and irradiated at the Advanced Test Reactor at INL to a peak burnup of 19.6% fissions per initial metal atom. This work involved a broad array of experiments and analyses to evaluate the level of fission product retention by the fuel particles and compacts (both during irradiation and during post-irradiation heating tests to simulate reactor accident conditions), investigate the kernel and coating layer morphology evolution and the causes of coating failure, and explore the migration of fission products through the coating layers. The results have generally confirmed the excellent performance of the AGR-1 fuel, first indicated during the irradiation by the observation of zero TRISO coated particle failures out of 298,000 particles in the experiment. Overall release of fission products was determined by PIE to have been relatively low during the irradiation. A significant finding was the extremely low levels of cesium released through intact coatings. This was true both during the irradiation and during post-irradiation heating tests to temperatures as high as 1800°C. Post-irradiation safety test fuel performance was generally excellent. Silver release from the particles and compacts during irradiation was often very high. Extensive microanalysis of fuel particles was performed after irradiation and after high-temperature safety testing. The results of particle microanalysis indicate that the UCO fuel is effective at controlling the oxygen partial pressure within the particle and limiting kernel migration. Post-irradiation examination has provided the final body of data that speaks to the quality of the AGR-1 fuel, building on the as-fabricated fuel characterization and irradiation data. In addition to the extensive volume of results generated, the work also resulted in a number of novel analysis techniques and lessons learned that are being applied to the examination of fuel from subsequent TRISO fuel irradiations. This report provides a summary of the results obtained as part of the AGR-1 PIE campaign over its approximately 5-year duration.

Post-irradiation Examination of the AGR-1 Experiment

Download Post-irradiation Examination of the AGR-1 Experiment PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (727 download)

DOWNLOAD NOW!


Book Synopsis Post-irradiation Examination of the AGR-1 Experiment by :

Download or read book Post-irradiation Examination of the AGR-1 Experiment written by and published by . This book was released on 2001 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract - The AGR-1 irradiation experiment contains seventy-two individual cylindrical fuel compacts (25 mm long x 12.5 mm diameter) each containing approximately 4100 TRISO-coated uranium oxycarbide fuel particles. The experiment accumulated 620 effective full power days in the Advanced Test Reactor at the Idaho National Laboratory with peak burnups exceeding 19% FIMA. An extensive post-irradiation examination campaign will be performed on the AGR-1 fuel in order to characterize the irradiated fuel properties, assess the in-pile fuel performance in terms of coating integrity and fission metals release, and determine the fission product retention behavior during high temperature accident testing. PIE experiments will include dimensional measurements of fuel and irradiated graphite, burnup measurements, assessment of fission metals release during irradiation, evaluation of coating integrity using the leach-burn-leach technique, microscopic examination of kernel and coating microstructures, and accident testing of the fuel in helium at temperatures up to 1800°C. Activities completed to date include opening of the irradiated capsules, measurement of fuel dimensions, and gamma spectrometry of selected fuel compacts.

Post-irradiation Examination and Fission Product Inventory Analysis of AGR-1 Irradiation Capsules

Download Post-irradiation Examination and Fission Product Inventory Analysis of AGR-1 Irradiation Capsules PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (967 download)

DOWNLOAD NOW!


Book Synopsis Post-irradiation Examination and Fission Product Inventory Analysis of AGR-1 Irradiation Capsules by :

Download or read book Post-irradiation Examination and Fission Product Inventory Analysis of AGR-1 Irradiation Capsules written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The AGR-1 experiment was the first in a series of Advanced Gas Reactor (AGR) experiments designed to test TRISO fuel under High Temperature Gas Reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post-irradiation examination (PIE) at INL's Materials and Fuels Complex (MFC). The inventory and distribution of fission products, especially Ag-110m, was assessed and analyzed for all the components of the AGR-1 capsules. This data should help inform the study of fission product migration in coated particle fuel. Gamma spectrometry was used to measure the activity of various different fission products in the different components of the AGR-1 test train. Each capsule contained: 12 fuel compacts, a graphite holder that kept the fuel compacts in place, graphite spacers that were above and below the graphite holders and fuel compacts, gas lines through which a helium neon gas mixture flowed in and out of each capsule, and the stainless steel shell that contained the experiment. Gamma spectrometry results and the experimental techniques used to capture these results will be presented for all the capsule components. The components were assayed to determine the total activity of different fission products present in or on them. These totals are compared to the total expected activity of a particular fission product in the capsule based on predictions from physics simulation. Based on this metric, a significant fraction of the Ag-110m was detected outside the fuel compacts, but the amount varied highly between the 6 capsules. Very small fractions of Cs-137 (

Preliminary Results of Post-irradiation Examination of the AGR-1 TRISO Fuel Compacts

Download Preliminary Results of Post-irradiation Examination of the AGR-1 TRISO Fuel Compacts PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (16 download)

DOWNLOAD NOW!


Book Synopsis Preliminary Results of Post-irradiation Examination of the AGR-1 TRISO Fuel Compacts by :

Download or read book Preliminary Results of Post-irradiation Examination of the AGR-1 TRISO Fuel Compacts written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Five irradiated fuel compacts from the AGR-1 experiment have been examined in detail in order to assess in-pile fission product release behavior. Compacts were electrolytically deconsolidated and analyzed using the leach-burn-leach technique to measure fission product inventory in the compact matrix and identify any particles with a defective SiC layer. Loose particles were then gamma counted to measure the fission product inventory. One particle with a defective SiC layer was found in the five compacts examined. The fractional release of Ag 110m from the particles was significant. The total fraction of silver released from all the particles within a compact ranged from 0-0.63 and individual particles within a single compact often exhibited a very wide range of silver release. The average fractional release of Eu-154 from all particles in a compact was 2.4×10-4--1.3×10-2, which is indicative of release through intact coatings. The fractional Cs-134 inventory in the compact matrix was

AGR-1 Fuel Compact 6-3-2 Post-Irradiation Examination Results

Download AGR-1 Fuel Compact 6-3-2 Post-Irradiation Examination Results PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (967 download)

DOWNLOAD NOW!


Book Synopsis AGR-1 Fuel Compact 6-3-2 Post-Irradiation Examination Results by :

Download or read book AGR-1 Fuel Compact 6-3-2 Post-Irradiation Examination Results written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Destructive post-irradiation examination was performed on fuel Compact 6-3-2, which was irradiated in the AGR-1 experiment to a final compact average burnup of 11.3% FIMA and a time-average, volume-average temperature of 1070°C. The analysis of this compact was focused on characterizing the extent of fission product release from the particles and examining particles to determine the condition of the kernels and coating layers. The work included deconsolidation of the compact and leach-burn-leach analysis, visual inspection and gamma counting of individual particles, measurement of fuel burnup by several methods, metallurgical preparation of selected particles, and examination of particle cross-sections with optical microscopy. A single particle with a defective SiC layer was identified during deconsolidation-leach-burn-leach analysis, which is in agreement with previous measurements showing elevated cesium in the Capsule 6 graphite fuel holder associated with this fuel compact. The fraction of the compact europium inventory released from the particles and retained in the matrix was relatively high (approximately 6E-3), indicating release from intact particle coatings. The Ag-110m inventory in individual particles exhibited a very broad distribution, with some particles retaining =80% of the predicted inventory and others retaining less than 25%. The average degree of Ag-110m retention in 60 gamma counted particles was approximately 50%. This elevated silver release is in agreement with analysis of silver on the Capsule 6 components, which indicated an average release of 38% of the Capsule 6 inventory from the fuel compacts. In spite of the relatively high degree of silver release from the particles, virtually none of the Ag-110m released was found in the compact matrix, and presumably migrated out of the compact and was deposited on the irradiation capsule components. Release of all other fission products from the particles appears to be less than a single particle equivalent inventory. Burnup measurements based on gamma spectrometry of individual particles and mass spectrometry of dissolved fuel kernels were in very good agreement (11.0% and 10.9% FIMA, respectively), and were also in good agreement with measurements based on previous gamma spectrometry measurements of the whole compact (11.0% FIMA) and the predicted burnup based on physics simulations of the AGR-1 irradiation (11.3% FIMA).

AGR-1 Irradiation Test Final As-Run Report, Rev 2

Download AGR-1 Irradiation Test Final As-Run Report, Rev 2 PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (16 download)

DOWNLOAD NOW!


Book Synopsis AGR-1 Irradiation Test Final As-Run Report, Rev 2 by :

Download or read book AGR-1 Irradiation Test Final As-Run Report, Rev 2 written by and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This document presents the as-run analysis of the AGR-1 irradiation experiment. AGR-1 is the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the US Department of Energy (DOE) as part of the Next-Generation Nuclear Plant (NGNP) project. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment was irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) for a total duration of 620 effective full power days of irradiation. Irradiation began on December 24, 2006 and ended on November 6, 2009 spanning 13 ATR cycles and approximately three calendar years. The test contained six independently controlled and monitored capsules. Each capsule contained 12 compacts of a single type, or variant, of the AGR coated fuel. No fuel particles failed during the AGR-1 irradiation. Final burnup values on a per compact basis ranged from 11.5 to 19.6 %FIMA, while fast fluence values ranged from 2.21 to 4.39?1025 n/m2 (E>0.18 MeV). We'll say something here about temperatures once thermal recalc is done. Thermocouples performed well, failing at a lower rate than expected. At the end of the irradiation, nine of the originally-planned 19 TCs were considered functional. Fission product release-to-birth (R/B) ratios were quite low. In most capsules, R/B values at the end of the irradiation were at or below 10-7 with only one capsule significantly exceeding this value. A maximum R/B of around 2?10-7 was reached at the end of the irradiation in Capsule 5. Several shakedown issues were encountered and resolved during the first three cycles. These include the repair of minor gas line leaks; repair of faulty gas line valves; the need to position moisture monitors in regions of low radiation fields for proper functioning; the enforcement of proper on-line data storage and backup, the need to monitor thermocouple performance, correcting for detector spectral gain shift, and a change in the mass flow rate range of the neon flow controllers.

AGR-1 Irradiation Test Final As-Run Report, Rev. 3

Download AGR-1 Irradiation Test Final As-Run Report, Rev. 3 PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 115 pages
Book Rating : 4.:/5 (925 download)

DOWNLOAD NOW!


Book Synopsis AGR-1 Irradiation Test Final As-Run Report, Rev. 3 by :

Download or read book AGR-1 Irradiation Test Final As-Run Report, Rev. 3 written by and published by . This book was released on 2015 with total page 115 pages. Available in PDF, EPUB and Kindle. Book excerpt: This document presents the as-run analysis of the AGR-1 irradiation experiment. AGR-1 is the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the US Department of Energy (DOE) as part of the Next-Generation Nuclear Plant (NGNP) project. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment was irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) for a total duration of 620 effective full power days of irradiation. Irradiation began on December 24, 2006 and ended on November 6, 2009 spanning 13 ATR cycles and approximately three calendar years. The test contained six independently controlled and monitored capsules. Each capsule contained 12 compacts of a single type, or variant, of the AGR coated fuel. No fuel particles failed during the AGR-1 irradiation. Final burnup values on a per compact basis ranged from 11.5 to 19.6 %FIMA, while fast fluence values ranged from 2.21 to 4.39 x 1025 n/m2 (E>0.18 MeV). We'll say something here about temperatures once thermal recalc is done. Thermocouples performed well, failing at a lower rate than expected. At the end of the irradiation, nine of the originally-planned 19 TCs were considered functional. Fission product release-to-birth (R/B) ratios were quite low. In most capsules, R/B values at the end of the irradiation were at or below 10-7 with only one capsule significantly exceeding this value. A maximum R/B of around 2 x 10-7 was reached at the end of the irradiation in Capsule 5. Several shakedown issues were encountered and resolved during the first three cycles. These include the repair of minor gas line leaks; repair of faulty gas line valves; the need to position moisture monitors in regions of low radiation fields for proper functioning; the enforcement of proper on-line data storage and backup, the need to monitor thermocouple performance, correcting for detector spectral gain shift, and a change in the mass flow rate range of the neon flow controllers.

AGR-1 Irradiation Experiment Test Plan

Download AGR-1 Irradiation Experiment Test Plan PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (727 download)

DOWNLOAD NOW!


Book Synopsis AGR-1 Irradiation Experiment Test Plan by :

Download or read book AGR-1 Irradiation Experiment Test Plan written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This document presents the current state of planning for the AGR-1 irradiation experiment, the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment will be irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). The test will contain six independently controlled and monitored capsules. Each capsule will contain a single type, or variant, of the AGR coated fuel. The irradiation is planned for about 700 effective full power days (approximately 2.4 calendar years) with a time-averaged, volume-average temperature of approximately 1050 °C. Average fuel burnup, for the entire test, will be greater than 17.7 % FIMA, and the fuel will experience fast neutron fluences between 2.4 and 4.5 x 1025 n/m2 (E>0.18 MeV).

AGR-1 Irradiation Test Final As-Run Report

Download AGR-1 Irradiation Test Final As-Run Report PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (967 download)

DOWNLOAD NOW!


Book Synopsis AGR-1 Irradiation Test Final As-Run Report by :

Download or read book AGR-1 Irradiation Test Final As-Run Report written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This document presents the as-run analysis of the AGR-1 irradiation experiment. AGR-1 is the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the US Department of Energy (DOE) as part of the Next-Generation Nuclear Plant (NGNP) project. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment was irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) for a total duration of 620 effective full power days of irradiation. Irradiation began on December 24, 2006 and ended on November 6, 2009 spanning 13 ATR cycles and approximately three calendar years. The test contained six independently controlled and monitored capsules. Each capsule contained 12 compacts of a single type, or variant, of the AGR coated fuel. No fuel particles failed during the AGR-1 irradiation. Final burnup values on a per compact basis ranged from 11.5 to 19.6 %FIMA, while fast fluence values ranged from 2.21 to 4.39?1025 n/m2 (E>0.18 MeV). We'll say something here about temperatures once thermal recalc is done. Thermocouples performed well, failing at a lower rate than expected. At the end of the irradiation, nine of the originally-planned 19 TCs were considered functional. Fission product release-to-birth (R/B) ratios were quite low. In most capsules, R/B values at the end of the irradiation were at or below 10-7 with only one capsule significantly exceeding this value. A maximum R/B of around 2?10-7 was reached at the end of the irradiation in Capsule 5. Several shakedown issues were encountered and resolved during the first three cycles. These include the repair of minor gas line leaks; repair of faulty gas line valves; the need to position moisture monitors in regions of low radiation fields for proper functioning; the enforcement of proper on-line data storage and backup, the need to monitor thermocouple performance, correcting for detector spectral gain shift, and a change in the mass flow rate range of the neon flow controllers.

Daily Thermal Predictions of the AGR-1 Experiment with Gas Gaps Varying with Time

Download Daily Thermal Predictions of the AGR-1 Experiment with Gas Gaps Varying with Time PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (16 download)

DOWNLOAD NOW!


Book Synopsis Daily Thermal Predictions of the AGR-1 Experiment with Gas Gaps Varying with Time by :

Download or read book Daily Thermal Predictions of the AGR-1 Experiment with Gas Gaps Varying with Time written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: A new daily as-run thermal analysis was performed at the Idaho National Laboratory on the Advanced Gas Reactor (AGR) test experiment number one at the Advanced Test Reactor (ATR). This thermal analysis incorporates gas gaps changing with time during the irradiation experiment. The purpose of this analysis was to calculate the daily average temperatures of each compact to compare with experimental results. Post irradiation examination (PIE) measurements of the graphite holder and fuel compacts showed the gas gaps varying from the beginning of life. The control temperature gas gap and the fuel compact - graphite holder gas gaps were linearly changed from the original fabrication dimensions, to the end of irradiation measurements. A steady-state thermal analysis was performed for each daily calculation. These new thermal predictions more closely match the experimental data taken during the experiment than previous analyses. Results are presented comparing normalized compact average temperatures to normalized log(R/B) Kr-85m. The R/B term is the measured release rate divided by the predicted birth rate for the isotope Kr-85m. Correlations between these two normalized values are presented.

AGR-1 Irradiated Test Train Preliminary Inspection and Disassembly First Look

Download AGR-1 Irradiated Test Train Preliminary Inspection and Disassembly First Look PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (727 download)

DOWNLOAD NOW!


Book Synopsis AGR-1 Irradiated Test Train Preliminary Inspection and Disassembly First Look by :

Download or read book AGR-1 Irradiated Test Train Preliminary Inspection and Disassembly First Look written by and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The AGR-1 irradiation experiment ended on November 6, 2009, after 620 effective full power days in the Advanced Test Reactor, achieving a peak burnup of 19.6% FIMA. The test train was shipped to the Materials and Fuels Complex in March 2010 for post-irradiation examination. The first PIE activities included non-destructive examination of the test train, followed by disassembly of the test train and individual capsules and detailed inspection of the capsule contents, including the fuel compacts and the graphite fuel holders. Dimensional measurements of the compacts, graphite holders, and steel capsules shells were performed using a custom vision measurement system (for outer diameters and lengths) and conventional bore gauges (for inner diameters). Gamma spectrometry of the intact test train gave a preliminary look at the condition of the interior components. No evidence of damage to compacts or graphite components was evident from the isotopic and gross gamma scans. Neutron radiography of the intact Capsule 2 showed a high degree of detail of interior components and confirmed the observation that there was no major damage to the capsule. Disassembly of the capsules was initiated using procedures qualified during out-of-cell mockup testing. Difficulties were encountered during capsule disassembly due to irradiation-induced changes in some of the capsule components' properties, including embrittled niobium and molybdenum parts that were susceptible to fracture and swelling of the graphite fuel holders that affected their removal from the capsule shells. This required various improvised modifications to the disassembly procedure to avoid damage to the fuel compacts. Ultimately the capsule disassembly was successful and only one compact from Capsule 4 (out of 72 total in the test train) sustained damage during the disassembly process, along with the associated graphite holder. The compacts were generally in very good condition upon removal. Only relatively minor damage or markings were visible using high resolution photographic inspection. Compact dimensional measurements indicated diametrical shrinkage of 0.9 to 1. 4%, and length shrinkage of 0.2 to 1.1%. The shrinkage was somewhat dependent on compact location within each capsule and within the test train. Compacts exhibited a maximum diametrical shrinkage at a fast neutron fluence of approximately 3 x 1021 n/cm2. A multivariate statistical analysis indicates that fast neutron fluence as well as compact position in the test train influence compact shrinkage.

AGR-2 Irradiation Test Final As-Run Report, Rev 2

Download AGR-2 Irradiation Test Final As-Run Report, Rev 2 PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 103 pages
Book Rating : 4.:/5 (16 download)

DOWNLOAD NOW!


Book Synopsis AGR-2 Irradiation Test Final As-Run Report, Rev 2 by :

Download or read book AGR-2 Irradiation Test Final As-Run Report, Rev 2 written by and published by . This book was released on 2014 with total page 103 pages. Available in PDF, EPUB and Kindle. Book excerpt: This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The test contained six independently controlled and monitored capsules. Each U.S. capsule contained 12 compacts of either UCO or UO2 AGR coated fuel. No fuel particles failed during the AGR-2 irradiation. Final burnup values on a per compact basis ranged from 7.26 to 13.15% FIMA (fissions per initial heavy-metal atom) for UCO fuel, and 9.01 to 10.69% FIMA for UO2 fuel, while fast fluence values ranged from 1.94 to 3.47 x 1025 n/m2 (E >0.18 MeV) for UCO fuel, and from 3.05 to 3.53 x 1025 n/m2 (E >0.18 MeV) for UO2 fuel. Time-average volume-average (TAVA) temperatures on a capsule basis at the end of irradiation ranged from 987°C in Capsule 6 to 1296°C in Capsule 2 for UCO, and from 996 to 1062°C in UO2-fueled Capsule 3. By the end of the irradiation, all of the installed thermocouples (TCs) had failed. Fission product release-to-birth (R/B) ratios were quite low. In the UCO capsules, R/B values during the first three cycles were below 10-6 with the exception of the hotter Capsule 2, in which the R/Bs reached 2 x 10-6. In the UO2 capsule (Capsule 3), the R/B values during the first three cycles were below 10-7. R/B values for all following cycles are not reliable due to gas flow and cross talk issues.

AGR-2 Irradiation Test Final As-Run Report

Download AGR-2 Irradiation Test Final As-Run Report PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (953 download)

DOWNLOAD NOW!


Book Synopsis AGR-2 Irradiation Test Final As-Run Report by :

Download or read book AGR-2 Irradiation Test Final As-Run Report written by and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This document presents the as-run analysis of the AGR-2 irradiation experiment. AGR-2 is the second of the planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. Funding for this program is provided by the U.S. Department of Energy as part of the Very High Temperature Reactor (VHTR) Technical Development Office (TDO) program. The objectives of the AGR-2 experiment are to: (a) Irradiate UCO (uranium oxycarbide) and UO2 (uranium dioxide) fuel produced in a large coater. Fuel attributes are based on results obtained from the AGR-1 test and other project activities. (b) Provide irradiated fuel samples for post-irradiation experiment (PIE) and safety testing. (c) Support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. The primary objective of the test was to irradiate both UCO and UO2 TRISO (tri-structural isotropic) fuel produced from prototypic scale equipment to obtain normal operation and accident condition fuel performance data. The UCO compacts were subjected to a range of burnups and temperatures typical of anticipated prismatic reactor service conditions in three capsules. The test train also includes compacts containing UO2 particles produced independently by the United States, South Africa, and France in three separate capsules. The range of burnups and temperatures in these capsules were typical of anticipated pebble bed reactor service conditions. The results discussed in this report pertain only to U.S. produced fuel. In order to achieve the test objectives, the AGR-2 experiment was irradiated in the B-12 position of the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) for a total irradiation duration of 559.2 effective full power days (EFPD). Irradiation began on June 22, 2010, and ended on October 16, 2013, spanning 12 ATR power cycles and approximately three and a half calendar years. The test contained six independently controlled and monitored capsules. Each U.S. capsule contained 12 compacts of either UCO or UO2 AGR coated fuel. No fuel particles failed during the AGR-2 irradiation. Final burnup values on a per compact basis ranged from 7.26 to 13.15% FIMA (fissions per initial heavy-metal atom) for UCO fuel, and 9.01 to 10.69% FIMA for UO2 fuel, while fast fluence values ranged from 1.94 to 3.47́1025 n/m2 (E>0.18 MeV) for UCO fuel, and from 3.05 to 3.53́1025 n/m2 (E>0.18 MeV) for UO2 fuel. Time-average volume-average (TAVA) temperatures on a capsule basis at the end of irradiation ranged from 987°C in Capsule 6 to 1296°C in Capsule 2 for UCO, and from 996 to 1062°C in UO2-fueled Capsule 3. By the end of the irradiation, all of the installed thermocouples (TCs) had failed. Fission product release-to-birth (R/B) ratios were quite low. In the UCO capsules, R/B values during the first three cycles were below 10-6 with the exception of the hotter Capsule 2, in which the R/Bs reached 2́10-6. In the UO2 capsule (Capsule 3), the R/B values during the first three cycles were below 10-7. R/B values for all following cycles are not reliable due to gas flow and cross talk issues.

Validation of the Physics Analysis Used to Characterize the AGR-1 TRISO Fuel Irradiation Test

Download Validation of the Physics Analysis Used to Characterize the AGR-1 TRISO Fuel Irradiation Test PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 13 pages
Book Rating : 4.:/5 (925 download)

DOWNLOAD NOW!


Book Synopsis Validation of the Physics Analysis Used to Characterize the AGR-1 TRISO Fuel Irradiation Test by :

Download or read book Validation of the Physics Analysis Used to Characterize the AGR-1 TRISO Fuel Irradiation Test written by and published by . This book was released on 2015 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt: The results of a detailed physics depletion calculation used to characterize the AGR-1 TRISO-coated particle fuel test irradiated in the Advanced Test Reactor (ATR) at the Idaho National Laboratory are compared to measured data for the purpose of validation. The particle fuel was irradiated for 13 ATR power cycles over three calendar years. The physics analysis predicts compact burnups ranging from 11.30-19.56% FIMA and cumulative neutron fast fluence from 2.21?4.39E+25 n/m2 under simulated high-temperature gas-cooled reactor conditions in the ATR. The physics depletion calculation can provide a full characterization of all 72 irradiated TRISO-coated particle compacts during and post-irradiation, so validation of this physics calculation was a top priority. The validation of the physics analysis was done through comparisons with available measured experimental data which included: 1) high-resolution gamma scans for compact activity and burnup, 2) mass spectrometry for compact burnup, 3) flux wires for cumulative fast fluence, and 4) mass spectrometry for individual actinide and fission product concentrations. The measured data are generally in very good agreement with the calculated results, and therefore provide an adequate validation of the physics analysis and the results used to characterize the irradiated AGR-1 TRISO fuel.

Final Assembly and Initial Irradiation of the First Advanced Gas Reactor Fuel Development and Qualification Experiment in the Advanced Test Reactor

Download Final Assembly and Initial Irradiation of the First Advanced Gas Reactor Fuel Development and Qualification Experiment in the Advanced Test Reactor PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (727 download)

DOWNLOAD NOW!


Book Synopsis Final Assembly and Initial Irradiation of the First Advanced Gas Reactor Fuel Development and Qualification Experiment in the Advanced Test Reactor by :

Download or read book Final Assembly and Initial Irradiation of the First Advanced Gas Reactor Fuel Development and Qualification Experiment in the Advanced Test Reactor written by and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The United States Department of Energy's Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotropic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the new United States Department of Energy's lead laboratory for nuclear energy development. The ATR is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The AGR fuel experiments will be irradiated over the next ten years to demonstrate and qualify new particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. 1,2 The experiments, which will each consist of six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The final design phase for the first experiment was completed in 2005, and the fabrication and assembly of the first experiment test train (designated AGR-1) as well as the support systems and fission product monitoring system that will monitor and control the experiment during irradiation were completed in 2006. The experiment was inserted in the ATR in December 2006, and will serve as a shakedown test of the multi-capsule experiment design that will be used in the subsequent irradiations as well as a test of the early variants of the fuel produced under this program. The experiment test train as well as the monitoring, control, and data collection systems are discussed.

Advanced Gas Reactor (AGR)-5/6/7 Fuel Irradiation Experiments in the Advanced Test Reactor

Download Advanced Gas Reactor (AGR)-5/6/7 Fuel Irradiation Experiments in the Advanced Test Reactor PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (967 download)

DOWNLOAD NOW!


Book Synopsis Advanced Gas Reactor (AGR)-5/6/7 Fuel Irradiation Experiments in the Advanced Test Reactor by :

Download or read book Advanced Gas Reactor (AGR)-5/6/7 Fuel Irradiation Experiments in the Advanced Test Reactor written by and published by . This book was released on 2014 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The United States Department of Energy's Very High Temperature Reactor (VHTR) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which each consist of at least five separate capsules, are being irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gases also have on-line fission product monitoring the effluent from each capsule to track performance of the fuel during irradiation. The first two experiments (designated AGR-1 and AGR-2), have been completed. The third and fourth experiments have been combined into a single experiment designated AGR-3/4, which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. The design of the fuel qualification experiment, designated AGR-5/6/7, is well underway and incorporates lessons learned from the three previous experiments. Various design issues will be discussed with particular details related to selection of thermometry.

Completion of the First NGNP Advanced Gas Reactor Fuel Irradiation Experiment, AGR-1, in the Advanced Test Reactor

Download Completion of the First NGNP Advanced Gas Reactor Fuel Irradiation Experiment, AGR-1, in the Advanced Test Reactor PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (727 download)

DOWNLOAD NOW!


Book Synopsis Completion of the First NGNP Advanced Gas Reactor Fuel Irradiation Experiment, AGR-1, in the Advanced Test Reactor by :

Download or read book Completion of the First NGNP Advanced Gas Reactor Fuel Irradiation Experiment, AGR-1, in the Advanced Test Reactor written by and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The United States Department of Energy's Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program will be irradiating up to seven separate low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The ATR has a long history of irradiation testing in support of reactor development and the INL has been designated as the United States Department of Energy's lead laboratory for nuclear energy development. The ATR is one of the world's premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States, and will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the irradiation experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of at least six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and completed a very successful irradiation in early November 2009. The design of AGR-1 test train and support systems used to monitor and control the experiment during irradiation will be discussed and the results of the experiment will be presented. The second experiment (AGR-2) is currently being assembled, and the status as well as the new fuel and irradiation conditions for that experiment will also be discussed.