Physical Models of Neural Networks

Download Physical Models of Neural Networks PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789810200121
Total Pages : 158 pages
Book Rating : 4.2/5 (1 download)

DOWNLOAD NOW!


Book Synopsis Physical Models of Neural Networks by : Tam s Geszti

Download or read book Physical Models of Neural Networks written by Tam s Geszti and published by World Scientific. This book was released on 1990 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: This lecture note volume is mainly about the recent development that connected neural network modeling to the theoretical physics of disordered systems. It gives a detailed account of the (Little-) Hopfield model and its ramifications concerning non-orthogonal and hierarchical patterns, short-term memory, time sequences, and dynamical learning algorithms. It also offers a brief introduction to computation in layered feed-forward networks, trained by back-propagation and other methods. Kohonen's self-organizing feature map algorithm is discussed in detail as a physical ordering process. The book offers a minimum complexity guide through the often cumbersome theories developed around the Hopfield model. The physical model for the Kohonen self-organizing feature map algorithm is new, enabling the reader to better understand how and why this fascinating and somewhat mysterious tool works.

Artificial Neural Network Modelling

Download Artificial Neural Network Modelling PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319284959
Total Pages : 468 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Artificial Neural Network Modelling by : Subana Shanmuganathan

Download or read book Artificial Neural Network Modelling written by Subana Shanmuganathan and published by Springer. This book was released on 2016-02-03 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling.

Talking Nets

Download Talking Nets PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 9780262511117
Total Pages : 452 pages
Book Rating : 4.5/5 (111 download)

DOWNLOAD NOW!


Book Synopsis Talking Nets by : James A. Anderson

Download or read book Talking Nets written by James A. Anderson and published by MIT Press. This book was released on 2000-02-28 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: Surprising tales from the scientists who first learned how to use computers to understand the workings of the human brain. Since World War II, a group of scientists has been attempting to understand the human nervous system and to build computer systems that emulate the brain's abilities. Many of the early workers in this field of neural networks came from cybernetics; others came from neuroscience, physics, electrical engineering, mathematics, psychology, even economics. In this collection of interviews, those who helped to shape the field share their childhood memories, their influences, how they became interested in neural networks, and what they see as its future. The subjects tell stories that have been told, referred to, whispered about, and imagined throughout the history of the field. Together, the interviews form a Rashomon-like web of reality. Some of the mythic people responsible for the foundations of modern brain theory and cybernetics, such as Norbert Wiener, Warren McCulloch, and Frank Rosenblatt, appear prominently in the recollections. The interviewees agree about some things and disagree about more. Together, they tell the story of how science is actually done, including the false starts, and the Darwinian struggle for jobs, resources, and reputation. Although some of the interviews contain technical material, there is no actual mathematics in the book. Contributors James A. Anderson, Michael Arbib, Gail Carpenter, Leon Cooper, Jack Cowan, Walter Freeman, Stephen Grossberg, Robert Hecht-Neilsen, Geoffrey Hinton, Teuvo Kohonen, Bart Kosko, Jerome Lettvin, Carver Mead, David Rumelhart, Terry Sejnowski, Paul Werbos, Bernard Widrow

Neural Nets

Download Neural Nets PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540458085
Total Pages : 250 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Neural Nets by : Maria Marinaro

Download or read book Neural Nets written by Maria Marinaro and published by Springer. This book was released on 2003-06-30 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the thoroughly refereed post-proceedings of the 13th Italian Workshop on Neural Nets, WIRN VIETRI 2002, held in Vietri sul Mare, Italy in May/June 2002.The 21 revised full papers presented together with three invited papers were carefully reviewed and revised during two rounds of selection and improvement. The papers are organized in topical sections on architectures and algorithms, image and signal processing applications, and learning in neural networks.

Semi-empirical Neural Network Modeling and Digital Twins Development

Download Semi-empirical Neural Network Modeling and Digital Twins Development PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 012815652X
Total Pages : 290 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Semi-empirical Neural Network Modeling and Digital Twins Development by : Dmitriy Tarkhov

Download or read book Semi-empirical Neural Network Modeling and Digital Twins Development written by Dmitriy Tarkhov and published by Academic Press. This book was released on 2019-11-23 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Semi-empirical Neural Network Modeling presents a new approach on how to quickly construct an accurate, multilayered neural network solution of differential equations. Current neural network methods have significant disadvantages, including a lengthy learning process and single-layered neural networks built on the finite element method (FEM). The strength of the new method presented in this book is the automatic inclusion of task parameters in the final solution formula, which eliminates the need for repeated problem-solving. This is especially important for constructing individual models with unique features. The book illustrates key concepts through a large number of specific problems, both hypothetical models and practical interest. - Offers a new approach to neural networks using a unified simulation model at all stages of design and operation - Illustrates this new approach with numerous concrete examples throughout the book - Presents the methodology in separate and clearly-defined stages

Modeling Brain Function

Download Modeling Brain Function PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521421249
Total Pages : 528 pages
Book Rating : 4.4/5 (212 download)

DOWNLOAD NOW!


Book Synopsis Modeling Brain Function by : D. J. Amit

Download or read book Modeling Brain Function written by D. J. Amit and published by Cambridge University Press. This book was released on 1989 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most exciting and potentially rewarding areas of scientific research is the study of the principles and mechanisms underlying brain function. It is also of great promise to future generations of computers. A growing group of researchers, adapting knowledge and techniques from a wide range of scientific disciplines, have made substantial progress understanding memory, the learning process, and self organization by studying the properties of models of neural networks - idealized systems containing very large numbers of connected neurons, whose interactions give rise to the special qualities of the brain. This book introduces and explains the techniques brought from physics to the study of neural networks and the insights they have stimulated. It is written at a level accessible to the wide range of researchers working on these problems - statistical physicists, biologists, computer scientists, computer technologists and cognitive psychologists. The author presents a coherent and clear nonmechanical presentation of all the basic ideas and results. More technical aspects are restricted, wherever possible, to special sections and appendices in each chapter. The book is suitable as a text for graduate courses in physics, electrical engineering, computer science and biology.

Neuronal Dynamics

Download Neuronal Dynamics PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107060834
Total Pages : 591 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Neuronal Dynamics by : Wulfram Gerstner

Download or read book Neuronal Dynamics written by Wulfram Gerstner and published by Cambridge University Press. This book was released on 2014-07-24 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: This solid introduction uses the principles of physics and the tools of mathematics to approach fundamental questions of neuroscience.

Analog VLSI Implementation of Neural Systems

Download Analog VLSI Implementation of Neural Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1461316391
Total Pages : 250 pages
Book Rating : 4.4/5 (613 download)

DOWNLOAD NOW!


Book Synopsis Analog VLSI Implementation of Neural Systems by : Carver Mead

Download or read book Analog VLSI Implementation of Neural Systems written by Carver Mead and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of a workshop on Analog Integrated Neural Systems held May 8, 1989, in connection with the International Symposium on Circuits and Systems. The presentations were chosen to encompass the entire range of topics currently under study in this exciting new discipline. Stringent acceptance requirements were placed on contributions: (1) each description was required to include detailed characterization of a working chip, and (2) each design was not to have been published previously. In several cases, the status of the project was not known until a few weeks before the meeting date. As a result, some of the most recent innovative work in the field was presented. Because this discipline is evolving rapidly, each project is very much a work in progress. Authors were asked to devote considerable attention to the shortcomings of their designs, as well as to the notable successes they achieved. In this way, other workers can now avoid stumbling into the same traps, and evolution can proceed more rapidly (and less painfully). The chapters in this volume are presented in the same order as the corresponding presentations at the workshop. The first two chapters are concerned with fmding solutions to complex optimization problems under a predefmed set of constraints. The first chapter reports what is, to the best of our knowledge, the first neural-chip design. In each case, the physics of the underlying electronic medium is used to represent a cost function in a natural way, using only nearest-neighbor connectivity.

Continuum Scale Simulation of Engineering Materials

Download Continuum Scale Simulation of Engineering Materials PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 3527604219
Total Pages : 885 pages
Book Rating : 4.5/5 (276 download)

DOWNLOAD NOW!


Book Synopsis Continuum Scale Simulation of Engineering Materials by : Dierk Raabe

Download or read book Continuum Scale Simulation of Engineering Materials written by Dierk Raabe and published by John Wiley & Sons. This book was released on 2006-03-06 with total page 885 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book fills a gap by presenting our current knowledge and understanding of continuum-based concepts behind computational methods used for microstructure and process simulation of engineering materials above the atomic scale. The volume provides an excellent overview on the different methods, comparing the different methods in terms of their respective particular weaknesses and advantages. This trains readers to identify appropriate approaches to the new challenges that emerge every day in this exciting domain. Divided into three main parts, the first is a basic overview covering fundamental key methods in the field of continuum scale materials simulation. The second one then goes on to look at applications of these methods to the prediction of microstructures, dealing with explicit simulation examples, while the third part discusses example applications in the field of process simulation. By presenting a spectrum of different computational approaches to materials, the book aims to initiate the development of corresponding virtual laboratories in the industry in which these methods are exploited. As such, it addresses graduates and undergraduates, lecturers, materials scientists and engineers, physicists, biologists, chemists, mathematicians, and mechanical engineers.

Neural Modeling

Download Neural Modeling PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468421905
Total Pages : 413 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Neural Modeling by : Ronald MacGregor

Download or read book Neural Modeling written by Ronald MacGregor and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to introduce and survey the various quantitative methods which have been proposed for describing, simulating, embodying, or characterizing the processing of electrical signals in nervous systems. We believe that electrical signal processing is a vital determinant of the functional organization of the brain, and that in unraveling the inherent complexities of this processing it will be essential to utilize the methods of quantification and modeling which have led to crowning successes in the physical and engineering sciences. In comprehensive terms, we conceive neural modeling to be the attempt to relate, in nervous systems, function to structure on the basis of operation. Sufficient knowledge and appropriate tools are at hand to maintain a serious and thorough study in the area. However, work in the area has yet to be satisfactorily integrated within contemporary brain research. Moreover, there exists a good deal of inefficiency within the area resulting from an overall lack of direction, critical self-evaluation, and cohesion. Such theoretical and modeling studies as have appeared exist largely as fragmented islands in the literature or as sparsely attended sessions at neuroscience conferences. In writing this book, we were guided by three main immediate objectives. Our first objective is to introduce the area to the upcoming generation of students of both the hard sciences and psychological and biological sciences in the hope that they might eventually help bring about the contributions it promises.

NeuroAnimator [microform]: Fast Neural Network Emulation and Control of Physics-based Models

Download NeuroAnimator [microform]: Fast Neural Network Emulation and Control of Physics-based Models PDF Online Free

Author :
Publisher : National Library of Canada = Bibliothèque nationale du Canada
ISBN 13 : 9780612414303
Total Pages : 134 pages
Book Rating : 4.4/5 (143 download)

DOWNLOAD NOW!


Book Synopsis NeuroAnimator [microform]: Fast Neural Network Emulation and Control of Physics-based Models by : Radek Grzeszczuk

Download or read book NeuroAnimator [microform]: Fast Neural Network Emulation and Control of Physics-based Models written by Radek Grzeszczuk and published by National Library of Canada = Bibliothèque nationale du Canada. This book was released on 1998 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Physical Models of Living Systems

Download Physical Models of Living Systems PDF Online Free

Author :
Publisher : Macmillan Higher Education
ISBN 13 : 1319036902
Total Pages : 365 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Physical Models of Living Systems by : Philip Nelson

Download or read book Physical Models of Living Systems written by Philip Nelson and published by Macmillan Higher Education. This book was released on 2014-12-20 with total page 365 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written for intermediate-level undergraduates pursuing any science or engineering major, Physical Models of Living Systems helps students develop many of the competencies that form the basis of the new MCAT2015. The only prerequisite is first-year physics. With the more advanced "Track-2" sections at the end of each chapter, the book can be used in graduate-level courses as well.

Deep Learning Illustrated

Download Deep Learning Illustrated PDF Online Free

Author :
Publisher : Addison-Wesley Professional
ISBN 13 : 0135121728
Total Pages : 725 pages
Book Rating : 4.1/5 (351 download)

DOWNLOAD NOW!


Book Synopsis Deep Learning Illustrated by : Jon Krohn

Download or read book Deep Learning Illustrated written by Jon Krohn and published by Addison-Wesley Professional. This book was released on 2019-08-05 with total page 725 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The authors’ clear visual style provides a comprehensive look at what’s currently possible with artificial neural networks as well as a glimpse of the magic that’s to come." – Tim Urban, author of Wait But Why Fully Practical, Insightful Guide to Modern Deep Learning Deep learning is transforming software, facilitating powerful new artificial intelligence capabilities, and driving unprecedented algorithm performance. Deep Learning Illustrated is uniquely intuitive and offers a complete introduction to the discipline’s techniques. Packed with full-color figures and easy-to-follow code, it sweeps away the complexity of building deep learning models, making the subject approachable and fun to learn. World-class instructor and practitioner Jon Krohn–with visionary content from Grant Beyleveld and beautiful illustrations by Aglaé Bassens–presents straightforward analogies to explain what deep learning is, why it has become so popular, and how it relates to other machine learning approaches. Krohn has created a practical reference and tutorial for developers, data scientists, researchers, analysts, and students who want to start applying it. He illuminates theory with hands-on Python code in accompanying Jupyter notebooks. To help you progress quickly, he focuses on the versatile deep learning library Keras to nimbly construct efficient TensorFlow models; PyTorch, the leading alternative library, is also covered. You’ll gain a pragmatic understanding of all major deep learning approaches and their uses in applications ranging from machine vision and natural language processing to image generation and game-playing algorithms. Discover what makes deep learning systems unique, and the implications for practitioners Explore new tools that make deep learning models easier to build, use, and improve Master essential theory: artificial neurons, training, optimization, convolutional nets, recurrent nets, generative adversarial networks (GANs), deep reinforcement learning, and more Walk through building interactive deep learning applications, and move forward with your own artificial intelligence projects Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.

Data-Driven Science and Engineering

Download Data-Driven Science and Engineering PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1009098489
Total Pages : 615 pages
Book Rating : 4.0/5 (9 download)

DOWNLOAD NOW!


Book Synopsis Data-Driven Science and Engineering by : Steven L. Brunton

Download or read book Data-Driven Science and Engineering written by Steven L. Brunton and published by Cambridge University Press. This book was released on 2022-05-05 with total page 615 pages. Available in PDF, EPUB and Kindle. Book excerpt: A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.

The Principles of Deep Learning Theory

Download The Principles of Deep Learning Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316519333
Total Pages : 473 pages
Book Rating : 4.3/5 (165 download)

DOWNLOAD NOW!


Book Synopsis The Principles of Deep Learning Theory by : Daniel A. Roberts

Download or read book The Principles of Deep Learning Theory written by Daniel A. Roberts and published by Cambridge University Press. This book was released on 2022-05-26 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume develops an effective theory approach to understanding deep neural networks of practical relevance.

A Comprehensive Guide to Neural Network Modeling

Download A Comprehensive Guide to Neural Network Modeling PDF Online Free

Author :
Publisher : Nova Science Publishers
ISBN 13 : 9781536185423
Total Pages : 172 pages
Book Rating : 4.1/5 (854 download)

DOWNLOAD NOW!


Book Synopsis A Comprehensive Guide to Neural Network Modeling by : Steffen Skaar

Download or read book A Comprehensive Guide to Neural Network Modeling written by Steffen Skaar and published by Nova Science Publishers. This book was released on 2020-10-26 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: As artificial neural networks have been gaining importance in the field of engineering, this compilation aims to review the scientific literature regarding the use of artificial neural networks for the modelling and optimization of food drying processes. The applications of artificial neural networks in food engineering are presented, particularly focusing on control, monitoring and modeling of industrial food processes.The authors emphasize the main achievements of artificial neural network modeling in recent years in the field of quantitative structure-activity relationships and quantitative structure-retention relationships.In the closing study, artificial intelligence techniques are applied to river water quality data and artificial intelligence models are developed in an effort to contribute to the reduction of the cost of future on-line measurement stations.

Theory-Based Data Analysis for the Social Sciences

Download Theory-Based Data Analysis for the Social Sciences PDF Online Free

Author :
Publisher : SAGE
ISBN 13 : 1412994357
Total Pages : 473 pages
Book Rating : 4.4/5 (129 download)

DOWNLOAD NOW!


Book Synopsis Theory-Based Data Analysis for the Social Sciences by : Carol S. Aneshensel

Download or read book Theory-Based Data Analysis for the Social Sciences written by Carol S. Aneshensel and published by SAGE. This book was released on 2013 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the elaboration model for the multivariate analysis of observational quantitative data. This model entails the systematic introduction of "third variables" to the analysis of a focal relationship between one independent and one dependent variable to ascertain whether an inference of causality is justified. Two complementary strategies are used: an exclusionary strategy that rules out alternative explanations such as spuriousness and redundancy with competing theories, and an inclusive strategy that connects the focal relationship to a network of other relationships, including the hypothesized causal mechanisms linking the focal independent variable to the focal dependent variable. The primary emphasis is on the translation of theory into a logical analytic strategy and the interpretation of results. The elaboration model is applied with case studies drawn from newly published research that serve as prototypes for aligning theory and the data analytic plan used to test it; these studies are drawn from a wide range of substantive topics in the social sciences, such as emotion management in the workplace, subjective age identification during the transition to adulthood, and the relationship between religious and paranormal beliefs. The second application of the elaboration model is in the form of original data analysis presented in two Analysis Journals that are integrated throughout the text and implement the full elaboration model. Using real data, not contrived examples, the text provides a step-by-step guide through the process of integrating theory with data analysis in order to arrive at meaningful answers to research questions.