Multiphysics Phase-Field Fracture

Download Multiphysics Phase-Field Fracture PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110494191
Total Pages : 411 pages
Book Rating : 4.1/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Multiphysics Phase-Field Fracture by : Thomas Wick

Download or read book Multiphysics Phase-Field Fracture written by Thomas Wick and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-10-12 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is centered on mathematical modeling, innovative numerical algorithms and adaptive concepts to deal with fracture phenomena in multiphysics. State-of-the-art phase-field fracture models are complemented with prototype explanations and rigorous numerical analysis. These developments are embedded into a carefully designed balance between scientific computing aspects and numerical modeling of nonstationary coupled variational inequality systems. Therein, a focus is on nonlinear solvers, goal-oriented error estimation, predictor-corrector adaptivity, and interface conditions. Engineering applications show the potential for tackling practical problems within the fields of solid mechanics, porous media, and fluidstructure interaction.

Phase-field Modeling of Fracture for Multiphysics Problems

Download Phase-field Modeling of Fracture for Multiphysics Problems PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 342 pages
Book Rating : 4.:/5 (982 download)

DOWNLOAD NOW!


Book Synopsis Phase-field Modeling of Fracture for Multiphysics Problems by : Zachary Adam Wilson

Download or read book Phase-field Modeling of Fracture for Multiphysics Problems written by Zachary Adam Wilson and published by . This book was released on 2016 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Several recent works have demonstrated that phase-field methods for modeling fracture are capable of yielding complex crack evolution patterns in materials. This includes the nucleation, turning, branching, and merging of cracks subject to a variety of quasi-static and dynamic loadings. What follows will demonstrate how phase-field methods for fracture can be applied to problems involving materials subject to electromechanical coupling and the problem of hydraulic fracture. Brittle fracture is a major concern in piezoelectric ceramics. Fracture propagation in these materials is heavily influenced by the mechanical and electrical fields within the material as well as the boundary conditions on the crack surfaces. These conditions can lead to complex multi-modal crack growth. We develop a continuum thermodynamics framework for a damaging medium with electromechanical coupling subject to four different crack-face boundary conditions. A theory is presented to reproduce impermeable, permeable, conducting, and energetically consistent crack-face boundary conditions, the latter of which requires a finite deformation formulation. A primary application of hydraulic fracturing involves the injection of fluid into a perforated wellbore with the intention of fracturing the surrounding reservoir and stimulating its overall production. This process involves the coupling of fluid flow with material failure, which must account for the interactions of several cracks, both natural and man-made. Many of the questions on the effects these interactions have on the performance of the frac treatments are unanswered. We develop a continuum thermodynamics framework for fluid flow through a damaging porous medium in order to represent some of the processes and interactions that occur during hydraulic fracturing. The model will be capable of simulating both Stokes flow through cracks and Darcy flow through the porous medium. The flow is coupled to the deformation of the bulk solid medium and the evolution of cracks within the material. We utilize a finite deformation framework in order to capture the opening of the fractures, which can have substantial effects on fluid pressure response. For both models, a fully coupled non-linear finite element formulation is constructed. Several benchmark solutions are investigated to validate the expected behavior and accuracy of the method. In addition, a number of interesting problems are investigated in order to demonstrate the ability of the method to respond to various complexities like material anisotropy and the interaction of multiple cracks.

The Variational Approach to Fracture

Download The Variational Approach to Fracture PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1402063954
Total Pages : 173 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis The Variational Approach to Fracture by : Blaise Bourdin

Download or read book The Variational Approach to Fracture written by Blaise Bourdin and published by Springer Science & Business Media. This book was released on 2008-04-19 with total page 173 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting original results from both theoretical and numerical viewpoints, this text offers a detailed discussion of the variational approach to brittle fracture. This approach views crack growth as the result of a competition between bulk and surface energy, treating crack evolution from its initiation all the way to the failure of a sample. The authors model crack initiation, crack path, and crack extension for arbitrary geometries and loads.

Multiphysics Phase-Field Fracture

Download Multiphysics Phase-Field Fracture PDF Online Free

Author :
Publisher : Walter de Gruyter GmbH & Co KG
ISBN 13 : 3110497395
Total Pages : 358 pages
Book Rating : 4.1/5 (14 download)

DOWNLOAD NOW!


Book Synopsis Multiphysics Phase-Field Fracture by : Thomas Wick

Download or read book Multiphysics Phase-Field Fracture written by Thomas Wick and published by Walter de Gruyter GmbH & Co KG. This book was released on 2020-10-12 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is centered on mathematical modeling, innovative numerical algorithms and adaptive concepts to deal with fracture phenomena in multiphysics. State-of-the-art phase-field fracture models are complemented with prototype explanations and rigorous numerical analysis. These developments are embedded into a carefully designed balance between scientific computing aspects and numerical modeling of nonstationary coupled variational inequality systems. Therein, a focus is on nonlinear solvers, goal-oriented error estimation, predictor-corrector adaptivity, and interface conditions. Engineering applications show the potential for tackling practical problems within the fields of solid mechanics, porous media, and fluidstructure interaction.

Approximation of Free-Discontinuity Problems

Download Approximation of Free-Discontinuity Problems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540647713
Total Pages : 176 pages
Book Rating : 4.6/5 (477 download)

DOWNLOAD NOW!


Book Synopsis Approximation of Free-Discontinuity Problems by : Andrea Braides

Download or read book Approximation of Free-Discontinuity Problems written by Andrea Braides and published by Springer Science & Business Media. This book was released on 1998-09-17 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Functionals involving both volume and surface energies have a number of applications ranging from Computer Vision to Fracture Mechanics. In order to tackle numerical and dynamical problems linked to such functionals many approximations by functionals defined on smooth functions have been proposed (using high-order singular perturbations, finite-difference or non-local energies, etc.) The purpose of this book is to present a global approach to these approximations using the theory of gamma-convergence and of special functions of bounded variation. The book is directed to PhD students and researchers in calculus of variations, interested in approximation problems with possible applications.

Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids

Download Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030375188
Total Pages : 225 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids by : Laura De Lorenzis

Download or read book Modeling in Engineering Using Innovative Numerical Methods for Solids and Fluids written by Laura De Lorenzis and published by Springer Nature. This book was released on 2020-02-08 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book examines innovative numerical methods for computational solid and fluid mechanics that can be used to model complex problems in engineering. It also presents innovative and promising simulation methods, including the fundamentals of these methods, as well as advanced topics and complex applications. Further, the book explores how numerical simulations can significantly reduce the number of time-consuming and expensive experiments required, and can support engineering decisions by providing data that would be very difficult, if not impossible, to obtain experimentally. It also includes chapters covering topics such as particle methods addressing particle-based materials and numerical methods that are based on discrete element formulations; fictitious domain methods; phase field models; computational fluid dynamics based on modern finite volume schemes; hybridizable discontinuous Galerkin methods; and non-intrusive coupling methods for structural models.

Spall Fracture

Download Spall Fracture PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387215166
Total Pages : 409 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Spall Fracture by : Tarabay Antoun

Download or read book Spall Fracture written by Tarabay Antoun and published by Springer Science & Business Media. This book was released on 2006-04-06 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Shock-induced dynamic fracture of solids is of practical importance in many areas of materials science, chemical physics, engineering, and geophysics. This book, by an international roster of authors, comprises a systematic account of the current state of research in the field, integrating the large amount of work done in the former Soviet Union with the work done in the West. Topics covered include: Wave propagation, experimental techniques and measurements, spallation of materials of different classes (metals, ceramics, glasses, polymers), constitutive models of fracture processes, and computer simulations.

The Combined Finite-Discrete Element Method

Download The Combined Finite-Discrete Element Method PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470020172
Total Pages : 348 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis The Combined Finite-Discrete Element Method by : Antonio A. Munjiza

Download or read book The Combined Finite-Discrete Element Method written by Antonio A. Munjiza and published by John Wiley & Sons. This book was released on 2004-04-21 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: The combined finite discrete element method is a relatively new computational tool aimed at problems involving static and / or dynamic behaviour of systems involving a large number of solid deformable bodies. Such problems include fragmentation using explosives (e.g rock blasting), impacts, demolition (collapsing buildings), blast loads, digging and loading processes, and powder technology. The combined finite-discrete element method - a natural extension of both discrete and finite element methods - allows researchers to model problems involving the deformability of either one solid body, a large number of bodies, or a solid body which fragments (e.g. in rock blasting applications a more or less intact rock mass is transformed into a pile of solid rock fragments of different sizes, which interact with each other). The topic is gaining in importance, and is at the forefront of some of the current efforts in computational modeling of the failure of solids. * Accompanying source codes plus input and output files available on the Internet * Important applications such as mining engineering, rock blasting and petroleum engineering * Includes practical examples of applications areas Essential reading for postgraduates, researchers and software engineers working in mechanical engineering.

Dynamic Fracture

Download Dynamic Fracture PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080472559
Total Pages : 265 pages
Book Rating : 4.0/5 (84 download)

DOWNLOAD NOW!


Book Synopsis Dynamic Fracture by : K. Ravi-Chandar

Download or read book Dynamic Fracture written by K. Ravi-Chandar and published by Elsevier. This book was released on 2004-10-16 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamic fracture in solids has attracted much attention for over a century from engineers as well as physicists due both to its technological interest and to inherent scientific curiosity. Rapidly applied loads are encountered in a number of technical applications. In some cases such loads might be applied deliberately, as for example in problems of blasting, mining, and comminution or fragmentation; in other cases, such dynamic loads might arise from accidental conditions. Regardless of the origin of the rapid loading, it is necessary to understand the mechanisms and mechanics of fracture under dynamic loading conditions in order to design suitable procedures for assessing the susceptibility to fracture. Quite apart from its repercussions in the area of structural integrity, fundamental scientific curiosity has continued to play a large role in engendering interest in dynamic fracture problems In-depth coverage of the mechanics, experimental methods, practical applications Summary of material response of different materials Discussion of unresolved issues in dynamic fracture

Computational Methods for Fracture

Download Computational Methods for Fracture PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3039216864
Total Pages : 406 pages
Book Rating : 4.0/5 (392 download)

DOWNLOAD NOW!


Book Synopsis Computational Methods for Fracture by : Timon Rabczuk

Download or read book Computational Methods for Fracture written by Timon Rabczuk and published by MDPI. This book was released on 2019-10-28 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a collection of 17 scientific papers about the computational modeling of fracture. Some of the manuscripts propose new computational methods and/or how to improve existing cutting edge methods for fracture. These contributions can be classified into two categories: 1. Methods which treat the crack as strong discontinuity such as peridynamics, scaled boundary elements or specific versions of the smoothed finite element methods applied to fracture and 2. Continuous approaches to fracture based on, for instance, phase field models or continuum damage mechanics. On the other hand, the book also offers a wide range of applications where state-of-the-art techniques are employed to solve challenging engineering problems such as fractures in rock, glass, concrete. Also, larger systems such as fracture in subway stations due to fire, arch dams, or concrete decks are studied.

Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications

Download Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351796283
Total Pages : 259 pages
Book Rating : 4.3/5 (517 download)

DOWNLOAD NOW!


Book Synopsis Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications by : Xinpu Shen

Download or read book Numerical Simulation in Hydraulic Fracturing: Multiphysics Theory and Applications written by Xinpu Shen and published by CRC Press. This book was released on 2017-03-27 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: The expansion of unconventional petroleum resources in the recent decade and the rapid development of computational technology have provided the opportunity to develop and apply 3D numerical modeling technology to simulate the hydraulic fracturing of shale and tight sand formations. This book presents 3D numerical modeling technologies for hydraulic fracturing developed in recent years, and introduces solutions to various 3D geomechanical problems related to hydraulic fracturing. In the solution processes of the case studies included in the book, fully coupled multi-physics modeling has been adopted, along with innovative computational techniques, such as submodeling. In practice, hydraulic fracturing is an essential project component in shale gas/oil development and tight sand oil, and provides an essential measure in the process of drilling cuttings reinjection (CRI). It is also an essential measure for widened mud weight window (MWW) when drilling through naturally fractured formations; the process of hydraulic plugging is a typical application of hydraulic fracturing. 3D modeling and numerical analysis of hydraulic fracturing is essential for the successful development of tight oil/gas formations: it provides accurate solutions for optimized stage intervals in a multistage fracking job. It also provides optimized well-spacing for the design of zipper-frac wells. Numerical estimation of casing integrity under stimulation injection in the hydraulic fracturing process is one of major concerns in the successful development of unconventional resources. This topic is also investigated numerically in this book. Numerical solutions to several other typical geomechanics problems related to hydraulic fracturing, such as fluid migration caused by fault reactivation and seismic activities, are also presented. This book can be used as a reference textbook to petroleum, geotechnical and geothermal engineers, to senior undergraduate, graduate and postgraduate students, and to geologists, hydrogeologists, geophysicists and applied mathematicians working in this field. This book is also a synthetic compendium of both the fundamentals and some of the most advanced aspects of hydraulic fracturing technology.

Computational Methods of Multi-Physics Problems

Download Computational Methods of Multi-Physics Problems PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3039214179
Total Pages : 128 pages
Book Rating : 4.0/5 (392 download)

DOWNLOAD NOW!


Book Synopsis Computational Methods of Multi-Physics Problems by : Timon Rabczuk

Download or read book Computational Methods of Multi-Physics Problems written by Timon Rabczuk and published by MDPI. This book was released on 2019-08-20 with total page 128 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a collection of six papers addressing problems associated with the computational modeling of multi-field problems. Some of the proposed contributions present novel computational techniques, while other topics focus on applying state-of-the-art techniques in order to solve coupled problems in various areas including the prediction of material failure during the lithiation process, which is of major importance in batteries; efficient models for flexoelectricity, which require higher-order continuity; the prediction of composite pipes under thermomechanical conditions; material failure in rock; and computational materials design. The latter exploits nano-scale modeling in order to predict various material properties for two-dimensional materials with applications in, for example, semiconductors. In summary, this book provides a good overview of the computational modeling of different multi-field problems.

Applications of Phase-field Modeling in Hydraulic Fracture

Download Applications of Phase-field Modeling in Hydraulic Fracture PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 354 pages
Book Rating : 4.:/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Applications of Phase-field Modeling in Hydraulic Fracture by : Talal Eid Alotaibi

Download or read book Applications of Phase-field Modeling in Hydraulic Fracture written by Talal Eid Alotaibi and published by . This book was released on 2019 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the mechanisms behind the nucleation and propagation of cracks is of considerable interest in engineering application and design decisions. In many applications in the oil industry, complicated fracture geometries and propagation behaviors are encountered. As a result, the development of modeling approaches that can capture the physics of non-planar crack evolution while being computationally tractable is a critical challenge. The phase-field approach to fracture has been shown to be a powerful tool for simulating very complex fracture topologies, including the turning, splitting, and merging of cracks. In contrast to fracture models that explicitly track the crack surfaces, crack propagation and the evolution thereof arise out of the solution to a partial differential equation governing the evolution of a phase-field damage parameter. As such, the crack growth emerges naturally from solving the set of coupled differential equations linking the phase-field to other field quantities that can drive the fracture process. In the present model, the physics of flow through porous media and cracks is coupled with the mechanics of fracture. Darcy-type flow is modeled in the intact porous medium, which transitions to a Stokes-type flow regime within open cracks. This phase-field model is implemented to gain insights into the propagation behavior of fluid-injected cracks. One outstanding issue with phase-field fracture models is the decomposition of the strain energy required to ensure that compressive stress states do not cause crack propagation and damage evolution. In the present study, the proper representation of the strain energy function to reflect this fracture phenomenon is examined. The strain energy is constructed in terms of principle strains in such a way that it has two parts; the tensile and the compressive. A degradation function only applies to the tensile part enforcing that the crack is driven only by that part of the strain energy. We investigated the split operator proposed by Miehe et al. [1], and then proposed a split approach based on masonry-like material behavior [2, 3]. We have found that when using Miehe's form for the strain energy function, cracks can propagate under compressive stresses. In contrast, the approach based on a masonry-like materials constitutive model we proposed ensures that cracks do not grow under compressive stresses. To demonstrate the capabilities of phase-field modeling for fluid-driven fractures, four general types of problems are simulated: 1) interactions of fluid-driven, natural, and proppant-filled cracks, 2) crack growth through different material layers, 3) fluid-driven crack growth under the influence of in-situ far-field stresses, and 4) crack interactions with inclusions. The simulations illustrate the capabilities of the phase-field model for capturing interesting and complex crack growth phenomena. To understand how fluid-driven cracks interact with inclusions, AlTammar et al. [4] performed experiments. Three tests with tough inclusions were performed to understand the effects of orientation angle, thickness, and material properties. Additionally, one test with a weak inclusion was performed to compare the results with those of the tough inclusion cases. The experiments show a clear tendency for the fluid-driven hydraulic fracture to cross thick natural fractures filled with materials weaker and softer than the matrix and to be diverted by thick natural fractures with tougher and stiffer filling materials. To replicate these experiments numerically and to gain a mechanistic understanding, in the present study, we ran simulations using phase-field modeling. Results from both the experiments and the simulations provide clear evidence that inclusion width, angle, material properties, and distance from the injection point affect the outcome of the crack evolution. Phase-field modeling was able to capture the trends of crack deflection/crossing in all the test cases. Finally, we extended the phase-field model has been extended to three dimensions and tested it on bench-mark problems. The first bench-mark problem is a compact test for a CT specimen. In this problem, the mechanical equations are only considered. The simulation shows that the CT specimen is split into two symmetric parts. The second bench-mark problem is a fluid-driven circular crack. The simulation for this problem shows that the crack grows in a radial direction

Phase-Field Methods in Materials Science and Engineering

Download Phase-Field Methods in Materials Science and Engineering PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 3527632379
Total Pages : 323 pages
Book Rating : 4.5/5 (276 download)

DOWNLOAD NOW!


Book Synopsis Phase-Field Methods in Materials Science and Engineering by : Nikolas Provatas

Download or read book Phase-Field Methods in Materials Science and Engineering written by Nikolas Provatas and published by John Wiley & Sons. This book was released on 2011-07-26 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: This comprehensive and self-contained, one-stop source discusses phase-field methodology in a fundamental way, explaining advanced numerical techniques for solving phase-field and related continuum-field models. It also presents numerical techniques used to simulate various phenomena in a detailed, step-by-step way, such that readers can carry out their own code developments. Features many examples of how the methods explained can be used in materials science and engineering applications.

Crystal Plasticity Finite Element Methods

Download Crystal Plasticity Finite Element Methods PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 3527642099
Total Pages : 188 pages
Book Rating : 4.5/5 (276 download)

DOWNLOAD NOW!


Book Synopsis Crystal Plasticity Finite Element Methods by : Franz Roters

Download or read book Crystal Plasticity Finite Element Methods written by Franz Roters and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.

Free Discontinuity Problems

Download Free Discontinuity Problems PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 8876425934
Total Pages : 237 pages
Book Rating : 4.8/5 (764 download)

DOWNLOAD NOW!


Book Synopsis Free Discontinuity Problems by : Nicola Fusco

Download or read book Free Discontinuity Problems written by Nicola Fusco and published by Springer. This book was released on 2017-02-02 with total page 237 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a series of lectures on three of the best known examples of free discontinuity problems: the Mumford-Shah model for image segmentation, a variational model for the epitaxial growth of thin films, and the sharp interface limit of the Ohta-Kawasaki model for pattern formation in dyblock copolymers.

Advances in Computational Plasticity

Download Advances in Computational Plasticity PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319608851
Total Pages : 443 pages
Book Rating : 4.3/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Advances in Computational Plasticity by : Eugenio Oñate

Download or read book Advances in Computational Plasticity written by Eugenio Oñate and published by Springer. This book was released on 2017-09-09 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together some 20 chapters on state-of-the-art research in the broad field of computational plasticity with applications in civil and mechanical engineering, metal forming processes, geomechanics, nonlinear structural analysis, composites, biomechanics and multi-scale analysis of materials, among others. The chapters are written by world leaders in the different fields of computational plasticity.