Complex Networks & Their Applications XII

Download Complex Networks & Their Applications XII PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031534689
Total Pages : 483 pages
Book Rating : 4.0/5 (315 download)

DOWNLOAD NOW!


Book Synopsis Complex Networks & Their Applications XII by : Hocine Cherifi

Download or read book Complex Networks & Their Applications XII written by Hocine Cherifi and published by Springer Nature. This book was released on 2024 with total page 483 pages. Available in PDF, EPUB and Kindle. Book excerpt: Zusammenfassung: This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students and practitioners a unique update on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the XII International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2023). The carefully selected papers cover a wide range of theoretical topics such as network embedding and network geometry; community structure, network dynamics; diffusion, epidemics and spreading processes; machine learning and graph neural networks as well as all the main network applications, including social and political networks; networks in finance and economics; biological networks and technological networks

Advanced Methods for Complex Network Analysis

Download Advanced Methods for Complex Network Analysis PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 : 1466699655
Total Pages : 484 pages
Book Rating : 4.4/5 (666 download)

DOWNLOAD NOW!


Book Synopsis Advanced Methods for Complex Network Analysis by : Meghanathan, Natarajan

Download or read book Advanced Methods for Complex Network Analysis written by Meghanathan, Natarajan and published by IGI Global. This book was released on 2016-04-07 with total page 484 pages. Available in PDF, EPUB and Kindle. Book excerpt: As network science and technology continues to gain popularity, it becomes imperative to develop procedures to examine emergent network domains, as well as classical networks, to help ensure their overall optimization. Advanced Methods for Complex Network Analysis features the latest research on the algorithms and analysis measures being employed in the field of network science. Highlighting the application of graph models, advanced computation, and analytical procedures, this publication is a pivotal resource for students, faculty, industry practitioners, and business professionals interested in theoretical concepts and current developments in network domains.

Online Social Networks in Business Frameworks

Download Online Social Networks in Business Frameworks PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1394231105
Total Pages : 551 pages
Book Rating : 4.3/5 (942 download)

DOWNLOAD NOW!


Book Synopsis Online Social Networks in Business Frameworks by : Sudhir Kumar Rathi

Download or read book Online Social Networks in Business Frameworks written by Sudhir Kumar Rathi and published by John Wiley & Sons. This book was released on 2024-09-17 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a vital method for companies to connect with potential clients andconsumers in the digital era of Online Social Networks (OSNs), utilizing the strengthof well-known social networks and AI to achieve success through fostering brandsupporters, generating leads, and enhancing customer interactions. There are currently 4.8 billion Online Social Network (OSN) users worldwide. Online Social Networks in Business Frameworks presents marketing through online social networks (OSNs), which is a potent method for companies of all sizes to connect with potential clients and consumers. If visitors are not on OSN sites like Facebook, Twitter, and LinkedIn, they are missing out on the fact that people discover, learn about, follow, and purchase from companies on OSNs. Excellent OSN advertising may help a company achieve amazing success by fostering committed brand supporters and even generating leads and revenue. A type of digital advertising known as social media marketing (SMM) makes use of the strength of well-known social networks to further advertise and establish branding objectives. Nevertheless, it goes beyond simply setting up company accounts and tweeting whenever visitors feel like it. Preserving and improving profiles means posting content that represents the company and draws in the right audience, such as images, videos, articles, and live videos, addressing comments, shares, and likes while keeping an eye on the reputation to create a brand network, and following and interacting with followers, clients, and influencers.

Algorithms and Models for Network Data and Link Analysis

Download Algorithms and Models for Network Data and Link Analysis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316712516
Total Pages : 549 pages
Book Rating : 4.3/5 (167 download)

DOWNLOAD NOW!


Book Synopsis Algorithms and Models for Network Data and Link Analysis by : François Fouss

Download or read book Algorithms and Models for Network Data and Link Analysis written by François Fouss and published by Cambridge University Press. This book was released on 2016-07-12 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: Network data are produced automatically by everyday interactions - social networks, power grids, and links between data sets are a few examples. Such data capture social and economic behavior in a form that can be analyzed using powerful computational tools. This book is a guide to both basic and advanced techniques and algorithms for extracting useful information from network data. The content is organized around 'tasks', grouping the algorithms needed to gather specific types of information and thus answer specific types of questions. Examples include similarity between nodes in a network, prestige or centrality of individual nodes, and dense regions or communities in a network. Algorithms are derived in detail and summarized in pseudo-code. The book is intended primarily for computer scientists, engineers, statisticians and physicists, but it is also accessible to network scientists based in the social sciences. MATLAB®/Octave code illustrating some of the algorithms will be available at: http://www.cambridge.org/9781107125773.

Machine Learning in Complex Networks

Download Machine Learning in Complex Networks PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319172905
Total Pages : 345 pages
Book Rating : 4.3/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning in Complex Networks by : Thiago Christiano Silva

Download or read book Machine Learning in Complex Networks written by Thiago Christiano Silva and published by Springer. This book was released on 2016-01-28 with total page 345 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the features and advantages offered by complex networks in the machine learning domain. In the first part, an overview on complex networks and network-based machine learning is presented, offering necessary background material. In the second part, we describe in details some specific techniques based on complex networks for supervised, non-supervised, and semi-supervised learning. Particularly, a stochastic particle competition technique for both non-supervised and semi-supervised learning using a stochastic nonlinear dynamical system is described in details. Moreover, an analytical analysis is supplied, which enables one to predict the behavior of the proposed technique. In addition, data reliability issues are explored in semi-supervised learning. Such matter has practical importance and is not often found in the literature. With the goal of validating these techniques for solving real problems, simulations on broadly accepted databases are conducted. Still in this book, we present a hybrid supervised classification technique that combines both low and high orders of learning. The low level term can be implemented by any classification technique, while the high level term is realized by the extraction of features of the underlying network constructed from the input data. Thus, the former classifies the test instances by their physical features, while the latter measures the compliance of the test instances with the pattern formation of the data. We show that the high level technique can realize classification according to the semantic meaning of the data. This book intends to combine two widely studied research areas, machine learning and complex networks, which in turn will generate broad interests to scientific community, mainly to computer science and engineering areas.

Big Data of Complex Networks

Download Big Data of Complex Networks PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1315353598
Total Pages : 290 pages
Book Rating : 4.3/5 (153 download)

DOWNLOAD NOW!


Book Synopsis Big Data of Complex Networks by : Matthias Dehmer

Download or read book Big Data of Complex Networks written by Matthias Dehmer and published by CRC Press. This book was released on 2016-08-19 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data of Complex Networks presents and explains the methods from the study of big data that can be used in analysing massive structural data sets, including both very large networks and sets of graphs. As well as applying statistical analysis techniques like sampling and bootstrapping in an interdisciplinary manner to produce novel techniques for analyzing massive amounts of data, this book also explores the possibilities offered by the special aspects such as computer memory in investigating large sets of complex networks. Intended for computer scientists, statisticians and mathematicians interested in the big data and networks, Big Data of Complex Networks is also a valuable tool for researchers in the fields of visualization, data analysis, computer vision and bioinformatics. Key features: Provides a complete discussion of both the hardware and software used to organize big data Describes a wide range of useful applications for managing big data and resultant data sets Maintains a firm focus on massive data and large networks Unveils innovative techniques to help readers handle big data Matthias Dehmer received his PhD in computer science from the Darmstadt University of Technology, Germany. Currently, he is Professor at UMIT – The Health and Life Sciences University, Austria, and the Universität der Bundeswehr München. His research interests are in graph theory, data science, complex networks, complexity, statistics and information theory. Frank Emmert-Streib received his PhD in theoretical physics from the University of Bremen, and is currently Associate professor at Tampere University of Technology, Finland. His research interests are in the field of computational biology, machine learning and network medicine. Stefan Pickl holds a PhD in mathematics from the Darmstadt University of Technology, and is currently a Professor at Bundeswehr Universität München. His research interests are in operations research, systems biology, graph theory and discrete optimization. Andreas Holzinger received his PhD in cognitive science from Graz University and his habilitation (second PhD) in computer science from Graz University of Technology. He is head of the Holzinger Group HCI-KDD at the Medical University Graz and Visiting Professor for Machine Learning in Health Informatics Vienna University of Technology.

Artificial Intelligence Application in Networks and Systems

Download Artificial Intelligence Application in Networks and Systems PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031353145
Total Pages : 854 pages
Book Rating : 4.0/5 (313 download)

DOWNLOAD NOW!


Book Synopsis Artificial Intelligence Application in Networks and Systems by : Radek Silhavy

Download or read book Artificial Intelligence Application in Networks and Systems written by Radek Silhavy and published by Springer Nature. This book was released on 2023-07-08 with total page 854 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of artificial intelligence in networks and systems is a rapidly evolving field that has the potential to transform a wide range of industries. The refereed proceedings in this book is from the Artificial Intelligence Application in Networks and Systems session of the Computer Science Online Conference 2023 (CSOC 2023), which was held online in April 2023. The section brings together experts from different fields to present their research and discuss the latest trends and challenges. One of the key themes in this section is the development of intelligent systems that can learn, adapt, and optimize their performance in real time. Researchers are exploring how AI algorithms can be used to create autonomous networks and systems that can make decisions without human intervention. Furthermore, this section highlights the use of AI in improving network performance and efficiency. Researchers are exploring how AI algorithms can be used to optimize network routing, reduce congestion, and improve the quality of service. These efforts can help organizations save costs and improve user experience.

Automated Machine Learning

Download Automated Machine Learning PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3030053180
Total Pages : 223 pages
Book Rating : 4.0/5 (3 download)

DOWNLOAD NOW!


Book Synopsis Automated Machine Learning by : Frank Hutter

Download or read book Automated Machine Learning written by Frank Hutter and published by Springer. This book was released on 2019-05-17 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work.

Advancing Intelligent Networks Through Distributed Optimization

Download Advancing Intelligent Networks Through Distributed Optimization PDF Online Free

Author :
Publisher : IGI Global
ISBN 13 :
Total Pages : 618 pages
Book Rating : 4.3/5 (693 download)

DOWNLOAD NOW!


Book Synopsis Advancing Intelligent Networks Through Distributed Optimization by : Rajest, S. Suman

Download or read book Advancing Intelligent Networks Through Distributed Optimization written by Rajest, S. Suman and published by IGI Global. This book was released on 2024-08-29 with total page 618 pages. Available in PDF, EPUB and Kindle. Book excerpt: The numerous developments in wireless communications and artificial intelligence (AI) have recently transformed the Internet of Things (IoT) networks to a level of connectivity and intelligence beyond any prior design. This topology is sharply exemplified in mobile edge computing, smart cities, smart homes, smart grids, and the IoT, among many other intelligent applications. Intelligent networks are founded on integrating caching and multi-agent systems that optimize data storage and the entire device’s learning process. However, a central node through which all agents transmit status messages and reward information is a major drawback of this design pattern. This central node condition instigates more communication overhead, potential data leakage, and the birth of data islands. To reverse this trend, using distributed optimization techniques and methodologies in cache-enabled multi-agent learning environments is increasingly beneficial. Advancing Intelligent Networks Through Distributed Optimization explains the current race for sophisticated and accurate distributed optimization in cache-enabled intelligent IoT networks given the need to make multi-agent learning converge faster and reduce communication overhead. These techniques will require innovative resource allocation strategies stretching from system training to caching, communication, and processing amongst millions of agents. This book combines the key recent research in these races into a single binder that can serve all the interested theoretical and practical scholars. The book focuses broadly on intelligent systems’ optimization trends. It identifies the various applications of advanced distributed optimization from manufacturing to medicine, agriculture and smart cities.

Social Manufacturing: Fundamentals and Applications

Download Social Manufacturing: Fundamentals and Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319729861
Total Pages : 312 pages
Book Rating : 4.3/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Social Manufacturing: Fundamentals and Applications by : Pingyu Jiang

Download or read book Social Manufacturing: Fundamentals and Applications written by Pingyu Jiang and published by Springer. This book was released on 2018-06-12 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces social manufacturing, the next generation manufacturing paradigm that covers product life cycle activities that deal with Internet-based organizational and interactive mechanisms under the context of socio-technical systems in the fields of industrial and production engineering. Like its subject, the book's approach is multi-disciplinary, including manufacturing systems, operations management, computational social sciences and information systems applications. It reports on the latest research findings regarding the social manufacturing paradigm, the architecture, configuration and execution of social manufacturing systems and more. Further, it describes the individual technologies enabled by social manufacturing for each topic, supported by case studies. The technologies discussed include manufacturing resource minimalization and their socialized reorganizations, blockchain models in cybersecurity, computing and decision-making, social business relationships and organizational networks, open product design, social sensors and extended cyber-physical systems, and social factory and inter-connections. This book helps engineers and managers in industry to practice social manufacturing, as well as offering a systematic reference resource for researchers in manufacturing. Students also benefit from the detailed discussions of the latest research and technologies that will have been put into practice by the time they graduate.

Graph Representation Learning

Download Graph Representation Learning PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031015886
Total Pages : 141 pages
Book Rating : 4.0/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Graph Representation Learning by : William L. William L. Hamilton

Download or read book Graph Representation Learning written by William L. William L. Hamilton and published by Springer Nature. This book was released on 2022-06-01 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.

6GN for Future Wireless Networks

Download 6GN for Future Wireless Networks PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303063941X
Total Pages : 550 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis 6GN for Future Wireless Networks by : Xiaofei Wang

Download or read book 6GN for Future Wireless Networks written by Xiaofei Wang and published by Springer Nature. This book was released on 2021-01-28 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the Third International Conference on 6G for Future Wireless Networks, 6GN 2020, held in Tianjin, China, in August 2020. The conference was held virtually due to the COVID-19 pandemic. The 45 full papers were selected from 109 submissions and present the state of the art and practical applications of 6G technologies. The papers are arranged thematically on network scheduling and optimization; wireless system and platform; intelligent applications; network performance evaluation; cyber security and privacy; technologies for private 5G/6G.

ADVANCED MACHINE LEARNING ALGORITHMS

Download ADVANCED MACHINE LEARNING ALGORITHMS PDF Online Free

Author :
Publisher : Xoffencerpublication
ISBN 13 : 8119534751
Total Pages : 252 pages
Book Rating : 4.1/5 (195 download)

DOWNLOAD NOW!


Book Synopsis ADVANCED MACHINE LEARNING ALGORITHMS by : Mr. Rajesh Sen

Download or read book ADVANCED MACHINE LEARNING ALGORITHMS written by Mr. Rajesh Sen and published by Xoffencerpublication. This book was released on 2024-04-18 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of artificial intelligence has reached a greater degree of complexity with the introduction of advanced machine learning algorithms. When compared to more conventional approaches, these algorithms are more exhaustive in their examination of data analysis, pattern detection, and decision-making procedures. This is an overview that serves as an introduction. Deep learning is a subfield of machine learning in which artificial neural networks, which are modelled after the structure and function of the human brain, are taught to discover new information by analyzing huge volumes of data. For example, Convolutional Neural Networks (CNNs) for image recognition and Recurrent Neural Networks (RNNs) for sequential data analysis are examples of deep learning models that have achieved great success in a variety of disciplines, including computer vision, natural language processing, and speech recognition. Through the process of reinforcement learning, agents are taught to make sequences of decisions within an environment in order to maximize the accumulation of overall rewards. Reinforcement learning agents learn by trial and error, getting feedback in the form of incentives or penalties. This is in contrast to supervised learning, which offers the model data that has been labelled. The use of this strategy has shown to be effective in a variety of domains, including robotics, autonomous vehicle control, and game playing (for example, AlphaGo). Deep learning models that fall into the GAN category were first presented by Ian Good fellow in the year 2014. Generalized adversarial networks (GANs) are made up of two neural networks—a generator and a discriminator—that are trained concurrently in a competitive environment. It is the discriminator's job to learn how to distinguish between genuine and false data, while the generator is responsible for learning how to make synthetic data samples that are similar to actual data. Application areas for GANs include the production of images, the enhancement of data, and the transfer of styles. This particular sort of deep learning model, known as transformers, has been increasingly popular in the field of natural language processing (NLP) initiatives. Transformers, in contrast to more conventional sequence models such as recurrent neural networks (RNNs) and long short-term

Complex Networks and Their Applications XI

Download Complex Networks and Their Applications XI PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031211316
Total Pages : 674 pages
Book Rating : 4.0/5 (312 download)

DOWNLOAD NOW!


Book Synopsis Complex Networks and Their Applications XI by : Hocine Cherifi

Download or read book Complex Networks and Their Applications XI written by Hocine Cherifi and published by Springer Nature. This book was released on 2023-01-25 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book highlights cutting-edge research in the field of network science, offering scientists, researchers, students and practitioners a unique update on the latest advances in theory and a multitude of applications. It presents the peer-reviewed proceedings of the XI International Conference on Complex Networks and their Applications (COMPLEX NETWORKS 2022). The carefully selected papers cover a wide range of theoretical topics such as network models and measures; community structure, network dynamics; diffusion, epidemics and spreading processes; resilience and control as well as all the main network applications, including social and political networks; networks in finance and economics; biological and neuroscience networks and technological networks.

Machine Learning, Optimization, and Big Data

Download Machine Learning, Optimization, and Big Data PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319279262
Total Pages : 386 pages
Book Rating : 4.3/5 (192 download)

DOWNLOAD NOW!


Book Synopsis Machine Learning, Optimization, and Big Data by : Panos Pardalos

Download or read book Machine Learning, Optimization, and Big Data written by Panos Pardalos and published by Springer. This book was released on 2016-01-05 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes revised selected papers from the First International Workshop on Machine Learning, Optimization, and Big Data, MOD 2015, held in Taormina, Sicily, Italy, in July 2015. The 32 papers presented in this volume were carefully reviewed and selected from 73 submissions. They deal with the algorithms, methods and theories relevant in data science, optimization and machine learning.

Proceedings of Third International Conference on Computing and Communication Networks

Download Proceedings of Third International Conference on Computing and Communication Networks PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819726719
Total Pages : 809 pages
Book Rating : 4.8/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of Third International Conference on Computing and Communication Networks by : Giancarlo Fortino

Download or read book Proceedings of Third International Conference on Computing and Communication Networks written by Giancarlo Fortino and published by Springer Nature. This book was released on with total page 809 pages. Available in PDF, EPUB and Kindle. Book excerpt:

7th EAI International Conference on Robotic Sensor Networks

Download 7th EAI International Conference on Robotic Sensor Networks PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031644956
Total Pages : 205 pages
Book Rating : 4.0/5 (316 download)

DOWNLOAD NOW!


Book Synopsis 7th EAI International Conference on Robotic Sensor Networks by : Ömer Melih Gül

Download or read book 7th EAI International Conference on Robotic Sensor Networks written by Ömer Melih Gül and published by Springer Nature. This book was released on with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: