Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Operator Theory Operator Algebras And Applications
Download Operator Theory Operator Algebras And Applications full books in PDF, epub, and Kindle. Read online Operator Theory Operator Algebras And Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Operator Theory, Operator Algebras, and Matrix Theory by : Carlos André
Download or read book Operator Theory, Operator Algebras, and Matrix Theory written by Carlos André and published by Birkhäuser. This book was released on 2018-08-22 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of invited survey articles and research papers in the scientific areas of the “International Workshop on Operator Algebras, Operator Theory and Applications,” which was held in Lisbon in July 2016. Reflecting recent developments in the field of algebras of operators, operator theory and matrix theory, it particularly focuses on groupoid algebras and Fredholm conditions, algebras of approximation sequences, C* algebras of convolution type operators, index theorems, spectrum and numerical range of operators, extreme supercharacters of infinite groups, quantum dynamics and operator algebras, and inverse eigenvalue problems. Establishing bridges between the three related areas of operator algebras, operator theory, and matrix theory, the book is aimed at researchers and graduate students who use results from these areas.
Book Synopsis Theory of Operator Algebras I by : Masamichi Takesaki
Download or read book Theory of Operator Algebras I written by Masamichi Takesaki and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics for infinite dimensional objects is becoming more and more important today both in theory and application. Rings of operators, renamed von Neumann algebras by J. Dixmier, were first introduced by J. von Neumann fifty years ago, 1929, in [254] with his grand aim of giving a sound founda tion to mathematical sciences of infinite nature. J. von Neumann and his collaborator F. J. Murray laid down the foundation for this new field of mathematics, operator algebras, in a series of papers, [240], [241], [242], [257] and [259], during the period of the 1930s and early in the 1940s. In the introduction to this series of investigations, they stated Their solution 1 {to the problems of understanding rings of operators) seems to be essential for the further advance of abstract operator theory in Hilbert space under several aspects. First, the formal calculus with operator-rings leads to them. Second, our attempts to generalize the theory of unitary group-representations essentially beyond their classical frame have always been blocked by the unsolved questions connected with these problems. Third, various aspects of the quantum mechanical formalism suggest strongly the elucidation of this subject. Fourth, the knowledge obtained in these investigations gives an approach to a class of abstract algebras without a finite basis, which seems to differ essentially from all types hitherto investigated. Since then there has appeared a large volume of literature, and a great deal of progress has been achieved by many mathematicians.
Book Synopsis Fundamentals of the Theory of Operator Algebras. Volume III by : Richard V. Kadison
Download or read book Fundamentals of the Theory of Operator Algebras. Volume III written by Richard V. Kadison and published by American Mathematical Soc.. This book was released on 1998-01-13 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is the companion volume to Fundamentals of the Theory of Operator Algebras. Volume I--Elementary Theory (Graduate Studies in Mathematics series, Volume 15). The goal of the text proper is to teach the subject and lead readers to where the vast literature--in the subject specifically and in its many applications--becomes accessible. The choice of material was made from among the fundamentals of what may be called the "classical" theory of operator algebras. This volume contains the written solutions to the exercises in the Fundamentals of the Theory of Operator Algebras. Volume I--Elementary Theory.
Book Synopsis K-Theory for Operator Algebras by : Bruce Blackadar
Download or read book K-Theory for Operator Algebras written by Bruce Blackadar and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: K -Theory has revolutionized the study of operator algebras in the last few years. As the primary component of the subject of "noncommutative topol ogy," K -theory has opened vast new vistas within the structure theory of C* algebras, as well as leading to profound and unexpected applications of opera tor algebras to problems in geometry and topology. As a result, many topolo gists and operator algebraists have feverishly begun trying to learn each others' subjects, and it appears certain that these two branches of mathematics have become deeply and permanently intertwined. Despite the fact that the whole subject is only about a decade old, operator K -theory has now reached a state of relative stability. While there will undoubtedly be many more revolutionary developments and applications in the future, it appears the basic theory has more or less reached a "final form." But because of the newness of the theory, there has so far been no comprehensive treatment of the subject. It is the ambitious goal of these notes to fill this gap. We will develop the K -theory of Banach algebras, the theory of extensions of C*-algebras, and the operator K -theory of Kasparov from scratch to its most advanced aspects. We will not treat applications in detail; however, we will outline the most striking of the applications to date in a section at the end, as well as mentioning others at suitable points in the text.
Book Synopsis Unbounded Operator Algebras and Representation Theory by : K. Schmüdgen
Download or read book Unbounded Operator Algebras and Representation Theory written by K. Schmüdgen and published by Birkhäuser. This book was released on 2013-11-11 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: *-algebras of unbounded operators in Hilbert space, or more generally algebraic systems of unbounded operators, occur in a natural way in unitary representation theory of Lie groups and in the Wightman formulation of quantum field theory. In representation theory they appear as the images of the associated representations of the Lie algebras or of the enveloping algebras on the Garding domain and in quantum field theory they occur as the vector space of field operators or the *-algebra generated by them. Some of the basic tools for the general theory were first introduced and used in these fields. For instance, the notion of the weak (bounded) commutant which plays a fundamental role in thegeneraltheory had already appeared in quantum field theory early in the six ties. Nevertheless, a systematic study of unbounded operator algebras began only at the beginning of the seventies. It was initiated by (in alphabetic order) BORCHERS, LASSNER, POWERS, UHLMANN and VASILIEV. J1'rom the very beginning, and still today, represen tation theory of Lie groups and Lie algebras and quantum field theory have been primary sources of motivation and also of examples. However, the general theory of unbounded operator algebras has also had points of contact with several other disciplines. In particu lar, the theory of locally convex spaces, the theory of von Neumann algebras, distri bution theory, single operator theory, the momcnt problem and its non-commutative generalizations and noncommutative probability theory, all have interacted with our subject.
Book Synopsis C*-Algebras and Operator Theory by : Gerald J. Murphy
Download or read book C*-Algebras and Operator Theory written by Gerald J. Murphy and published by Academic Press. This book was released on 2014-06-28 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes a first- or second-year graduate course in operator theory. It is a field that has great importance for other areas of mathematics and physics, such as algebraic topology, differential geometry, and quantum mechanics. It assumes a basic knowledge in functional analysis but no prior acquaintance with operator theory is required.
Book Synopsis Operator Algebras and Mathematical Physics by : Tirthankar Bhattacharyya
Download or read book Operator Algebras and Mathematical Physics written by Tirthankar Bhattacharyya and published by Birkhäuser. This book was released on 2015-09-29 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume gathers contributions from the International Workshop on Operator Theory and Its Applications (IWOTA) held in Bangalore, India, in December 2013. All articles were written by experts and cover a broad range of original material at the cutting edge of operator theory and its applications. Topics include multivariable operator theory, operator theory on indefinite metric spaces (Krein and Pontryagin spaces) and its applications, spectral theory with applications to differential operators, the geometry of Banach spaces, scattering and time varying linear systems, and wavelets and coherent states.
Book Synopsis State Spaces of Operator Algebras by : Erik M. Alfsen
Download or read book State Spaces of Operator Algebras written by Erik M. Alfsen and published by Springer Science & Business Media. This book was released on 2001-04-27 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The topic of this book is the theory of state spaces of operator algebras and their geometry. The states are of interest because they determine representations of the algebra, and its algebraic structure is in an intriguing and fascinating fashion encoded in the geometry of the state space. From the beginning the theory of operator algebras was motivated by applications to physics, but recently it has found unexpected new applica tions to various fields of pure mathematics, like foliations and knot theory, and (in the Jordan algebra case) also to Banach manifolds and infinite di mensional holomorphy. This makes it a relevant field of study for readers with diverse backgrounds and interests. Therefore this book is not intended solely for specialists in operator algebras, but also for graduate students and mathematicians in other fields who want to learn the subject. We assume that the reader starts out with only the basic knowledge taught in standard graduate courses in real and complex variables, measure theory and functional analysis. We have given complete proofs of basic results on operator algebras, so that no previous knowledge in this field is needed. For discussion of some topics, more advanced prerequisites are needed. Here we have included all necessary definitions and statements of results, but in some cases proofs are referred to standard texts. In those cases we have tried to give references to material that can be read and understood easily in the context of our book.
Book Synopsis Operator Theory, Functional Analysis and Applications by : M. Amélia Bastos
Download or read book Operator Theory, Functional Analysis and Applications written by M. Amélia Bastos and published by Birkhäuser. This book was released on 2021-04-01 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents 30 articles on the topic areas discussed at the 30th “International Workshop on Operator Theory and its Applications”, held in Lisbon in July 2019. The contributions include both expository essays and original research papers reflecting recent advances in the traditional IWOTA areas and emerging adjacent fields, as well as the applications of Operator Theory and Functional Analysis. The topics range from C*–algebras and Banach *–algebras, Sturm-Liouville theory, integrable systems, dilation theory, frame theory, Toeplitz, Hankel, and singular integral operators, to questions from lattice, group and matrix theories, complex analysis, harmonic analysis, and function spaces. Given its scope, the book is chiefly intended for researchers and graduate students in the areas of Operator Theory, Functional Analysis, their applications and adjacent fields.
Book Synopsis Operator Algebras and Applications: Volume 1, Structure Theory; K-theory, Geometry and Topology by : David E. Evans
Download or read book Operator Algebras and Applications: Volume 1, Structure Theory; K-theory, Geometry and Topology written by David E. Evans and published by Cambridge University Press. This book was released on 1988 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: These volumes form an authoritative statement of the current state of research in Operator Algebras. They consist of papers arising from a year-long symposium held at the University of Warwick. Contributors include many very well-known figures in the field.
Book Synopsis Operator Algebras and Quantum Statistical Mechanics 1 by : Ola Bratteli
Download or read book Operator Algebras and Quantum Statistical Mechanics 1 written by Ola Bratteli and published by Springer Science & Business Media. This book was released on 1987 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first of two volumes presenting the theory of operator algebras with applications to quantum statistical mechanics. The authors' approach to the operator theory is to a large extent governed by the dictates of the physical applications. The book is self-contained and most proofs are presented in detail, which makes it a useful text for students with a knowledge of basic functional analysis. The introductory chapter surveys the history and justification of algebraic techniques in statistical physics and outlines the applications that have been made. The second edition contains new and improved results. The principal changes include: A more comprehensive discussion of dissipative operators and analytic elements; the positive resolution of the question of whether maximal orthogonal probability measure on the state space of C-algebra were automatically maximal along all the probability measures on the space.
Book Synopsis Introduction to Vertex Operator Algebras and Their Representations by : James Lepowsky
Download or read book Introduction to Vertex Operator Algebras and Their Representations written by James Lepowsky and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 330 pages. Available in PDF, EPUB and Kindle. Book excerpt: * Introduces the fundamental theory of vertex operator algebras and its basic techniques and examples. * Begins with a detailed presentation of the theoretical foundations and proceeds to a range of applications. * Includes a number of new, original results and brings fresh perspective to important works of many other researchers in algebra, lie theory, representation theory, string theory, quantum field theory, and other areas of math and physics.
Book Synopsis Geometry of State Spaces of Operator Algebras by : Erik M. Alfsen
Download or read book Geometry of State Spaces of Operator Algebras written by Erik M. Alfsen and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book we give a complete geometric description of state spaces of operator algebras, Jordan as well as associative. That is, we give axiomatic characterizations of those convex sets that are state spaces of C*-algebras and von Neumann algebras, together with such characterizations for the normed Jordan algebras called JB-algebras and JBW-algebras. These non associative algebras generalize C*-algebras and von Neumann algebras re spectively, and the characterization of their state spaces is not only of interest in itself, but is also an important intermediate step towards the characterization of the state spaces of the associative algebras. This book gives a complete and updated presentation of the character ization theorems of [10]' [11] and [71]. Our previous book State spaces of operator algebras: basic theory, orientations and C*-products, referenced as [AS] in the sequel, gives an account of the necessary prerequisites on C*-algebras and von Neumann algebras, as well as a discussion of the key notion of orientations of state spaces. For the convenience of the reader, we have summarized these prerequisites in an appendix which contains all relevant definitions and results (listed as (AI), (A2), ... ), with reference back to [AS] for proofs, so that this book is self-contained.
Book Synopsis Introduction to Operator Space Theory by : Gilles Pisier
Download or read book Introduction to Operator Space Theory written by Gilles Pisier and published by Cambridge University Press. This book was released on 2003-08-25 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to the theory of operator spaces, emphasising applications to C*-algebras.
Book Synopsis A User's Guide to Operator Algebras by : Peter A. Fillmore
Download or read book A User's Guide to Operator Algebras written by Peter A. Fillmore and published by Wiley-Interscience. This book was released on 1996-04-19 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of operator algebras has experienced tremendous growth in recent years with significant applications to areas within algebraic mathematics as well as allied areas such as single operator theory, non-self-adjoint operator algegras, K-theory, knot theory, ergodic theory, and mathematical physics. This book makes recent developments in operator algebras accessible to the non-specialist.
Book Synopsis Completely Bounded Maps and Operator Algebras by : Vern Paulsen
Download or read book Completely Bounded Maps and Operator Algebras written by Vern Paulsen and published by Cambridge University Press. This book was released on 2002 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, first published in 2003, the reader is provided with a tour of the principal results and ideas in the theories of completely positive maps, completely bounded maps, dilation theory, operator spaces and operator algebras, together with some of their main applications. The author assumes only that the reader has a basic background in functional analysis, and the presentation is self-contained and paced appropriately for graduate students new to the subject. Experts will also want this book for their library since the author illustrates the power of methods he has developed with new and simpler proofs of some of the major results in the area, many of which have not appeared earlier in the literature. An indispensable introduction to the theory of operator spaces for all who want to know more.
Book Synopsis Positive Linear Maps of Operator Algebras by : Erling Størmer
Download or read book Positive Linear Maps of Operator Algebras written by Erling Størmer and published by Springer Science & Business Media. This book was released on 2012-12-13 with total page 135 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume, setting out the theory of positive maps as it stands today, reflects the rapid growth in this area of mathematics since it was recognized in the 1990s that these applications of C*-algebras are crucial to the study of entanglement in quantum theory. The author, a leading authority on the subject, sets out numerous results previously unpublished in book form. In addition to outlining the properties and structures of positive linear maps of operator algebras into the bounded operators on a Hilbert space, he guides readers through proofs of the Stinespring theorem and its applications to inequalities for positive maps. The text examines the maps’ positivity properties, as well as their associated linear functionals together with their density operators. It features special sections on extremal positive maps and Choi matrices. In sum, this is a vital publication that covers a full spectrum of matters relating to positive linear maps, of which a large proportion is relevant and applicable to today’s quantum information theory. The latter sections of the book present the material in finite dimensions, while the text as a whole appeals to a wider and more general readership by keeping the mathematics as elementary as possible throughout.