Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
On The Expansion Of The Mean Integrated Squared Error Of A Kernel Density Estimator
Download On The Expansion Of The Mean Integrated Squared Error Of A Kernel Density Estimator full books in PDF, epub, and Kindle. Read online On The Expansion Of The Mean Integrated Squared Error Of A Kernel Density Estimator ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Nonparametric Econometrics by : Qi Li
Download or read book Nonparametric Econometrics written by Qi Li and published by Princeton University Press. This book was released on 2011-10-09 with total page 769 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, up-to-date textbook on nonparametric methods for students and researchers Until now, students and researchers in nonparametric and semiparametric statistics and econometrics have had to turn to the latest journal articles to keep pace with these emerging methods of economic analysis. Nonparametric Econometrics fills a major gap by gathering together the most up-to-date theory and techniques and presenting them in a remarkably straightforward and accessible format. The empirical tests, data, and exercises included in this textbook help make it the ideal introduction for graduate students and an indispensable resource for researchers. Nonparametric and semiparametric methods have attracted a great deal of attention from statisticians in recent decades. While the majority of existing books on the subject operate from the presumption that the underlying data is strictly continuous in nature, more often than not social scientists deal with categorical data—nominal and ordinal—in applied settings. The conventional nonparametric approach to dealing with the presence of discrete variables is acknowledged to be unsatisfactory. This book is tailored to the needs of applied econometricians and social scientists. Qi Li and Jeffrey Racine emphasize nonparametric techniques suited to the rich array of data types—continuous, nominal, and ordinal—within one coherent framework. They also emphasize the properties of nonparametric estimators in the presence of potentially irrelevant variables. Nonparametric Econometrics covers all the material necessary to understand and apply nonparametric methods for real-world problems.
Book Synopsis Multivariate Kernel Smoothing and Its Applications by : José E. Chacón
Download or read book Multivariate Kernel Smoothing and Its Applications written by José E. Chacón and published by CRC Press. This book was released on 2018-05-08 with total page 226 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kernel smoothing has greatly evolved since its inception to become an essential methodology in the data science tool kit for the 21st century. Its widespread adoption is due to its fundamental role for multivariate exploratory data analysis, as well as the crucial role it plays in composite solutions to complex data challenges. Multivariate Kernel Smoothing and Its Applications offers a comprehensive overview of both aspects. It begins with a thorough exposition of the approaches to achieve the two basic goals of estimating probability density functions and their derivatives. The focus then turns to the applications of these approaches to more complex data analysis goals, many with a geometric/topological flavour, such as level set estimation, clustering (unsupervised learning), principal curves, and feature significance. Other topics, while not direct applications of density (derivative) estimation but sharing many commonalities with the previous settings, include classification (supervised learning), nearest neighbour estimation, and deconvolution for data observed with error. For a data scientist, each chapter contains illustrative Open data examples that are analysed by the most appropriate kernel smoothing method. The emphasis is always placed on an intuitive understanding of the data provided by the accompanying statistical visualisations. For a reader wishing to investigate further the details of their underlying statistical reasoning, a graduated exposition to a unified theoretical framework is provided. The algorithms for efficient software implementation are also discussed. José E. Chacón is an associate professor at the Department of Mathematics of the Universidad de Extremadura in Spain. Tarn Duong is a Senior Data Scientist for a start-up which provides short distance carpooling services in France. Both authors have made important contributions to kernel smoothing research over the last couple of decades.
Download or read book Kernel Smoothing written by M.P. Wand and published by CRC Press. This book was released on 1994-12-01 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kernel smoothing refers to a general methodology for recovery of underlying structure in data sets. The basic principle is that local averaging or smoothing is performed with respect to a kernel function. This book provides uninitiated readers with a feeling for the principles, applications, and analysis of kernel smoothers. This is facilita
Book Synopsis Introduction to Statistical Limit Theory by : Alan M. Polansky
Download or read book Introduction to Statistical Limit Theory written by Alan M. Polansky and published by CRC Press. This book was released on 2011-01-07 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Helping students develop a good understanding of asymptotic theory, Introduction to Statistical Limit Theory provides a thorough yet accessible treatment of common modes of convergence and their related tools used in statistics. It also discusses how the results can be applied to several common areas in the field.The author explains as much of the
Book Synopsis Uniform Central Limit Theorems by : R. M. Dudley
Download or read book Uniform Central Limit Theorems written by R. M. Dudley and published by Cambridge University Press. This book was released on 1999-07-28 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This treatise by an acknowledged expert includes several topics not found in any previous book.
Book Synopsis Density Estimation for Statistics and Data Analysis by : Bernard. W. Silverman
Download or read book Density Estimation for Statistics and Data Analysis written by Bernard. W. Silverman and published by Routledge. This book was released on 2018-02-19 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although there has been a surge of interest in density estimation in recent years, much of the published research has been concerned with purely technical matters with insufficient emphasis given to the technique's practical value. Furthermore, the subject has been rather inaccessible to the general statistician. The account presented in this book places emphasis on topics of methodological importance, in the hope that this will facilitate broader practical application of density estimation and also encourage research into relevant theoretical work. The book also provides an introduction to the subject for those with general interests in statistics. The important role of density estimation as a graphical technique is reflected by the inclusion of more than 50 graphs and figures throughout the text. Several contexts in which density estimation can be used are discussed, including the exploration and presentation of data, nonparametric discriminant analysis, cluster analysis, simulation and the bootstrap, bump hunting, projection pursuit, and the estimation of hazard rates and other quantities that depend on the density. This book includes general survey of methods available for density estimation. The Kernel method, both for univariate and multivariate data, is discussed in detail, with particular emphasis on ways of deciding how much to smooth and on computation aspects. Attention is also given to adaptive methods, which smooth to a greater degree in the tails of the distribution, and to methods based on the idea of penalized likelihood.
Book Synopsis Multivariate Kernel Smoothing and Its Applications by : José E. Chacón
Download or read book Multivariate Kernel Smoothing and Its Applications written by José E. Chacón and published by CRC Press. This book was released on 2018-05-08 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: Kernel smoothing has greatly evolved since its inception to become an essential methodology in the data science tool kit for the 21st century. Its widespread adoption is due to its fundamental role for multivariate exploratory data analysis, as well as the crucial role it plays in composite solutions to complex data challenges. Multivariate Kernel Smoothing and Its Applications offers a comprehensive overview of both aspects. It begins with a thorough exposition of the approaches to achieve the two basic goals of estimating probability density functions and their derivatives. The focus then turns to the applications of these approaches to more complex data analysis goals, many with a geometric/topological flavour, such as level set estimation, clustering (unsupervised learning), principal curves, and feature significance. Other topics, while not direct applications of density (derivative) estimation but sharing many commonalities with the previous settings, include classification (supervised learning), nearest neighbour estimation, and deconvolution for data observed with error. For a data scientist, each chapter contains illustrative Open data examples that are analysed by the most appropriate kernel smoothing method. The emphasis is always placed on an intuitive understanding of the data provided by the accompanying statistical visualisations. For a reader wishing to investigate further the details of their underlying statistical reasoning, a graduated exposition to a unified theoretical framework is provided. The algorithms for efficient software implementation are also discussed. José E. Chacón is an associate professor at the Department of Mathematics of the Universidad de Extremadura in Spain. Tarn Duong is a Senior Data Scientist for a start-up which provides short distance carpooling services in France. Both authors have made important contributions to kernel smoothing research over the last couple of decades.
Book Synopsis Nonparametric Density Estimation by : Luc Devroye
Download or read book Nonparametric Density Estimation written by Luc Devroye and published by New York ; Toronto : Wiley. This book was released on 1985-01-18 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a rigorous, systematic treatment of density estimates, their construction, use and analysis with full proofs. It develops L1 theory, rather than the classical L2, showing how L1 exposes fundamental properties of density estimates masked by L2.
Author :Alexandre B. Tsybakov Publisher :Springer Science & Business Media ISBN 13 :0387790527 Total Pages :222 pages Book Rating :4.3/5 (877 download)
Book Synopsis Introduction to Nonparametric Estimation by : Alexandre B. Tsybakov
Download or read book Introduction to Nonparametric Estimation written by Alexandre B. Tsybakov and published by Springer Science & Business Media. This book was released on 2008-10-22 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developed from lecture notes and ready to be used for a course on the graduate level, this concise text aims to introduce the fundamental concepts of nonparametric estimation theory while maintaining the exposition suitable for a first approach in the field.
Book Synopsis Wavelets, Approximation, and Statistical Applications by : Wolfgang Härdle
Download or read book Wavelets, Approximation, and Statistical Applications written by Wolfgang Härdle and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt: The mathematical theory of ondelettes (wavelets) was developed by Yves Meyer and many collaborators about 10 years ago. It was designed for ap proximation of possibly irregular functions and surfaces and was successfully applied in data compression, turbulence analysis, image and signal process ing. Five years ago wavelet theory progressively appeared to be a power ful framework for nonparametric statistical problems. Efficient computa tional implementations are beginning to surface in this second lustrum of the nineties. This book brings together these three main streams of wavelet theory. It presents the theory, discusses approximations and gives a variety of statistical applications. It is the aim of this text to introduce the novice in this field into the various aspects of wavelets. Wavelets require a highly interactive computing interface. We present therefore all applications with software code from an interactive statistical computing environment. Readers interested in theory and construction of wavelets will find here in a condensed form results that are somewhat scattered around in the research literature. A practioner will be able to use wavelets via the available software code. We hope therefore to address both theory and practice with this book and thus help to construct bridges between the different groups of scientists. This te. xt grew out of a French-German cooperation (Seminaire Paris Berlin, Seminar Berlin-Paris). This seminar brings together theoretical and applied statisticians from Berlin and Paris. This work originates in the first of these seminars organized in Garchy, Burgundy in 1994.
Book Synopsis Nonparametric Kernel Density Estimation and Its Computational Aspects by : Artur Gramacki
Download or read book Nonparametric Kernel Density Estimation and Its Computational Aspects written by Artur Gramacki and published by Springer. This book was released on 2017-12-21 with total page 197 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes computational problems related to kernel density estimation (KDE) – one of the most important and widely used data smoothing techniques. A very detailed description of novel FFT-based algorithms for both KDE computations and bandwidth selection are presented. The theory of KDE appears to have matured and is now well developed and understood. However, there is not much progress observed in terms of performance improvements. This book is an attempt to remedy this. The book primarily addresses researchers and advanced graduate or postgraduate students who are interested in KDE and its computational aspects. The book contains both some background and much more sophisticated material, hence also more experienced researchers in the KDE area may find it interesting. The presented material is richly illustrated with many numerical examples using both artificial and real datasets. Also, a number of practical applications related to KDE are presented.
Book Synopsis Smoothing Methods in Statistics by : Jeffrey S. Simonoff
Download or read book Smoothing Methods in Statistics written by Jeffrey S. Simonoff and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focussing on applications, this book covers a very broad range, including simple and complex univariate and multivariate density estimation, nonparametric regression estimation, categorical data smoothing, and applications of smoothing to other areas of statistics. It will thus be of particular interest to data analysts, as arguments generally proceed from actual data rather than statistical theory, while the "Background Material" sections will interest statisticians studying the field. Over 750 references allow researchers to find the original sources for more details, and the "Computational Issues" sections provide sources for statistical software that use the methods discussed. Each chapter includes exercises with a heavily computational focus based upon the data sets used in the book, making it equally suitable as a textbook for a course in smoothing.
Book Synopsis Statistical Theory and Method Abstracts by :
Download or read book Statistical Theory and Method Abstracts written by and published by . This book was released on 2001 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Probability and Statistics for Economists by : Bruce Hansen
Download or read book Probability and Statistics for Economists written by Bruce Hansen and published by Princeton University Press. This book was released on 2022-06-28 with total page 417 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and up-to-date introduction to the mathematics that all economics students need to know Probability theory is the quantitative language used to handle uncertainty and is the foundation of modern statistics. Probability and Statistics for Economists provides graduate and PhD students with an essential introduction to mathematical probability and statistical theory, which are the basis of the methods used in econometrics. This incisive textbook teaches fundamental concepts, emphasizes modern, real-world applications, and gives students an intuitive understanding of the mathematics that every economist needs to know. Covers probability and statistics with mathematical rigor while emphasizing intuitive explanations that are accessible to economics students of all backgrounds Discusses random variables, parametric and multivariate distributions, sampling, the law of large numbers, central limit theory, maximum likelihood estimation, numerical optimization, hypothesis testing, and more Features hundreds of exercises that enable students to learn by doing Includes an in-depth appendix summarizing important mathematical results as well as a wealth of real-world examples Can serve as a core textbook for a first-semester PhD course in econometrics and as a companion book to Bruce E. Hansen’s Econometrics Also an invaluable reference for researchers and practitioners
Book Synopsis All of Nonparametric Statistics by : Larry Wasserman
Download or read book All of Nonparametric Statistics written by Larry Wasserman and published by Springer Science & Business Media. This book was released on 2006-09-10 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides the reader with a single book where they can find accounts of a number of up-to-date issues in nonparametric inference. The book is aimed at Masters or PhD level students in statistics, computer science, and engineering. It is also suitable for researchers who want to get up to speed quickly on modern nonparametric methods. It covers a wide range of topics including the bootstrap, the nonparametric delta method, nonparametric regression, density estimation, orthogonal function methods, minimax estimation, nonparametric confidence sets, and wavelets. The book’s dual approach includes a mixture of methodology and theory.
Book Synopsis Aspects of Nonparametric Density Estimation by : A. J. van Es
Download or read book Aspects of Nonparametric Density Estimation written by A. J. van Es and published by . This book was released on 1991 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Nonparametric Functional Estimation by : B. L. S. Prakasa Rao
Download or read book Nonparametric Functional Estimation written by B. L. S. Prakasa Rao and published by Academic Press. This book was released on 2014-07-10 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonparametric Functional Estimation is a compendium of papers, written by experts, in the area of nonparametric functional estimation. This book attempts to be exhaustive in nature and is written both for specialists in the area as well as for students of statistics taking courses at the postgraduate level. The main emphasis throughout the book is on the discussion of several methods of estimation and on the study of their large sample properties. Chapters are devoted to topics on estimation of density and related functions, the application of density estimation to classification problems, and the different facets of estimation of distribution functions. Statisticians and students of statistics and engineering will find the text very useful.