Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
On The Application Of Machine Learning Approaches In Astronomy
Download On The Application Of Machine Learning Approaches In Astronomy full books in PDF, epub, and Kindle. Read online On The Application Of Machine Learning Approaches In Astronomy ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Advances in Machine Learning and Data Mining for Astronomy by : Michael J. Way
Download or read book Advances in Machine Learning and Data Mining for Astronomy written by Michael J. Way and published by CRC Press. This book was released on 2012-03-29 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Machine Learning and Data Mining for Astronomy documents numerous successful collaborations among computer scientists, statisticians, and astronomers who illustrate the application of state-of-the-art machine learning and data mining techniques in astronomy. Due to the massive amount and complexity of data in most scientific disciplines
Book Synopsis Statistics, Data Mining, and Machine Learning in Astronomy by : Željko Ivezić
Download or read book Statistics, Data Mining, and Machine Learning in Astronomy written by Željko Ivezić and published by Princeton University Press. This book was released on 2014-01-12 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: As telescopes, detectors, and computers grow ever more powerful, the volume of data at the disposal of astronomers and astrophysicists will enter the petabyte domain, providing accurate measurements for billions of celestial objects. This book provides a comprehensive and accessible introduction to the cutting-edge statistical methods needed to efficiently analyze complex data sets from astronomical surveys such as the Panoramic Survey Telescope and Rapid Response System, the Dark Energy Survey, and the upcoming Large Synoptic Survey Telescope. It serves as a practical handbook for graduate students and advanced undergraduates in physics and astronomy, and as an indispensable reference for researchers. Statistics, Data Mining, and Machine Learning in Astronomy presents a wealth of practical analysis problems, evaluates techniques for solving them, and explains how to use various approaches for different types and sizes of data sets. For all applications described in the book, Python code and example data sets are provided. The supporting data sets have been carefully selected from contemporary astronomical surveys (for example, the Sloan Digital Sky Survey) and are easy to download and use. The accompanying Python code is publicly available, well documented, and follows uniform coding standards. Together, the data sets and code enable readers to reproduce all the figures and examples, evaluate the methods, and adapt them to their own fields of interest. Describes the most useful statistical and data-mining methods for extracting knowledge from huge and complex astronomical data sets Features real-world data sets from contemporary astronomical surveys Uses a freely available Python codebase throughout Ideal for students and working astronomers
Book Synopsis Machine Learning in Heliophysics by : Thomas Berger
Download or read book Machine Learning in Heliophysics written by Thomas Berger and published by Frontiers Media SA. This book was released on 2021-11-24 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Machine Learning Techniques for Space Weather by : Enrico Camporeale
Download or read book Machine Learning Techniques for Space Weather written by Enrico Camporeale and published by Elsevier. This book was released on 2018-05-31 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning Techniques for Space Weather provides a thorough and accessible presentation of machine learning techniques that can be employed by space weather professionals. Additionally, it presents an overview of real-world applications in space science to the machine learning community, offering a bridge between the fields. As this volume demonstrates, real advances in space weather can be gained using nontraditional approaches that take into account nonlinear and complex dynamics, including information theory, nonlinear auto-regression models, neural networks and clustering algorithms. Offering practical techniques for translating the huge amount of information hidden in data into useful knowledge that allows for better prediction, this book is a unique and important resource for space physicists, space weather professionals and computer scientists in related fields. - Collects many representative non-traditional approaches to space weather into a single volume - Covers, in an accessible way, the mathematical background that is not often explained in detail for space scientists - Includes free software in the form of simple MATLAB® scripts that allow for replication of results in the book, also familiarizing readers with algorithms
Book Synopsis Machine Learning for Planetary Science by : Joern Helbert
Download or read book Machine Learning for Planetary Science written by Joern Helbert and published by Elsevier. This book was released on 2022-03-22 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning for Planetary Science presents planetary scientists with a way to introduce machine learning into the research workflow as increasingly large nonlinear datasets are acquired from planetary exploration missions. The book explores research that leverages machine learning methods to enhance our scientific understanding of planetary data and serves as a guide for selecting the right methods and tools for solving a variety of everyday problems in planetary science using machine learning. Illustrating ways to employ machine learning in practice with case studies, the book is clearly organized into four parts to provide thorough context and easy navigation. The book covers a range of issues, from data analysis on the ground to data analysis onboard a spacecraft, and from prioritization of novel or interesting observations to enhanced missions planning. This book is therefore a key resource for planetary scientists working in data analysis, missions planning, and scientific observation. - Includes links to a code repository for sharing codes and examples, some of which include executable Jupyter notebook files that can serve as tutorials - Presents methods applicable to everyday problems faced by planetary scientists and sufficient for analyzing large datasets - Serves as a guide for selecting the right method and tools for applying machine learning to particular analysis problems - Utilizes case studies to illustrate how machine learning methods can be employed in practice
Book Synopsis Applications of statistical methods and machine learning in the space sciences by : Bala Poduval
Download or read book Applications of statistical methods and machine learning in the space sciences written by Bala Poduval and published by Frontiers Media SA. This book was released on 2023-04-12 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Modern Statistical Methods for Astronomy by : Eric D. Feigelson
Download or read book Modern Statistical Methods for Astronomy written by Eric D. Feigelson and published by Cambridge University Press. This book was released on 2012-07-12 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern Statistical Methods for Astronomy: With R Applications.
Book Synopsis Intelligent Astrophysics by : Ivan Zelinka
Download or read book Intelligent Astrophysics written by Ivan Zelinka and published by Springer Nature. This book was released on 2021-04-15 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This present book discusses the application of the methods to astrophysical data from different perspectives. In this book, the reader will encounter interesting chapters that discuss data processing and pulsars, the complexity and information content of our universe, the use of tessellation in astronomy, characterization and classification of astronomical phenomena, identification of extragalactic objects, classification of pulsars and many other interesting chapters. The authors of these chapters are experts in their field and have been carefully selected to create this book so that the authors present to the community a representative publication that shows a unique fusion of artificial intelligence and astrophysics.
Book Synopsis Modeling, Machine Learning and Astronomy by : Snehanshu Saha
Download or read book Modeling, Machine Learning and Astronomy written by Snehanshu Saha and published by . This book was released on 2020 with total page 185 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the First International Conference on Modeling, Machine Learning and Astronomy, MMLA 2019, held in Bangalore, India, in November 2019. The 11 full papers and 3 short papers presented in this volume were carefully reviewed and selected from 63 submissions. They are organized in topical sections on modeling and foundations; machine learning applications; astronomy and astroinformatics.
Book Synopsis Big Data in Astronomy by : Linghe Kong
Download or read book Big Data in Astronomy written by Linghe Kong and published by Elsevier. This book was released on 2020-06-13 with total page 440 pages. Available in PDF, EPUB and Kindle. Book excerpt: Big Data in Radio Astronomy: Scientific Data Processing for Advanced Radio Telescopes provides the latest research developments in big data methods and techniques for radio astronomy. Providing examples from such projects as the Square Kilometer Array (SKA), the world's largest radio telescope that generates over an Exabyte of data every day, the book offers solutions for coping with the challenges and opportunities presented by the exponential growth of astronomical data. Presenting state-of-the-art results and research, this book is a timely reference for both practitioners and researchers working in radio astronomy, as well as students looking for a basic understanding of big data in astronomy. - Bridges the gap between radio astronomy and computer science - Includes coverage of the observation lifecycle as well as data collection, processing and analysis - Presents state-of-the-art research and techniques in big data related to radio astronomy - Utilizes real-world examples, such as Square Kilometer Array (SKA) and Five-hundred-meter Aperture Spherical radio Telescope (FAST)
Book Synopsis Introduction to Statistical Machine Learning by : Masashi Sugiyama
Download or read book Introduction to Statistical Machine Learning written by Masashi Sugiyama and published by Morgan Kaufmann. This book was released on 2015-10-31 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning allows computers to learn and discern patterns without actually being programmed. When Statistical techniques and machine learning are combined together they are a powerful tool for analysing various kinds of data in many computer science/engineering areas including, image processing, speech processing, natural language processing, robot control, as well as in fundamental sciences such as biology, medicine, astronomy, physics, and materials. Introduction to Statistical Machine Learning provides a general introduction to machine learning that covers a wide range of topics concisely and will help you bridge the gap between theory and practice. Part I discusses the fundamental concepts of statistics and probability that are used in describing machine learning algorithms. Part II and Part III explain the two major approaches of machine learning techniques; generative methods and discriminative methods. While Part III provides an in-depth look at advanced topics that play essential roles in making machine learning algorithms more useful in practice. The accompanying MATLAB/Octave programs provide you with the necessary practical skills needed to accomplish a wide range of data analysis tasks. - Provides the necessary background material to understand machine learning such as statistics, probability, linear algebra, and calculus - Complete coverage of the generative approach to statistical pattern recognition and the discriminative approach to statistical machine learning - Includes MATLAB/Octave programs so that readers can test the algorithms numerically and acquire both mathematical and practical skills in a wide range of data analysis tasks - Discusses a wide range of applications in machine learning and statistics and provides examples drawn from image processing, speech processing, natural language processing, robot control, as well as biology, medicine, astronomy, physics, and materials
Book Synopsis Machine Learning by : Andrea Mechelli
Download or read book Machine Learning written by Andrea Mechelli and published by Academic Press. This book was released on 2019-11-14 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning is an area of artificial intelligence involving the development of algorithms to discover trends and patterns in existing data; this information can then be used to make predictions on new data. A growing number of researchers and clinicians are using machine learning methods to develop and validate tools for assisting the diagnosis and treatment of patients with brain disorders. Machine Learning: Methods and Applications to Brain Disorders provides an up-to-date overview of how these methods can be applied to brain disorders, including both psychiatric and neurological disease. This book is written for a non-technical audience, such as neuroscientists, psychologists, psychiatrists, neurologists and health care practitioners. - Provides a non-technical introduction to machine learning and applications to brain disorders - Includes a detailed description of the most commonly used machine learning algorithms as well as some novel and promising approaches - Covers the main methodological challenges in the application of machine learning to brain disorders - Provides a step-by-step tutorial for implementing a machine learning pipeline to neuroimaging data in Python
Book Synopsis Advanced Machine Learning Approaches in Cancer Prognosis by : Janmenjoy Nayak
Download or read book Advanced Machine Learning Approaches in Cancer Prognosis written by Janmenjoy Nayak and published by Springer Nature. This book was released on 2021-05-29 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces a variety of advanced machine learning approaches covering the areas of neural networks, fuzzy logic, and hybrid intelligent systems for the determination and diagnosis of cancer. Moreover, the tactical solutions of machine learning have proved its vast range of significance and, provided novel solutions in the medical field for the diagnosis of disease. This book also explores the distinct deep learning approaches that are capable of yielding more accurate outcomes for the diagnosis of cancer. In addition to providing an overview of the emerging machine and deep learning approaches, it also enlightens an insight on how to evaluate the efficiency and appropriateness of such techniques and analysis of cancer data used in the cancer diagnosis. Therefore, this book focuses on the recent advancements in the machine learning and deep learning approaches used in the diagnosis of different types of cancer along with their research challenges and future directions for the targeted audience including scientists, experts, Ph.D. students, postdocs, and anyone interested in the subjects discussed.
Book Synopsis Machine Learning Methods in the Environmental Sciences by : William W. Hsieh
Download or read book Machine Learning Methods in the Environmental Sciences written by William W. Hsieh and published by Cambridge University Press. This book was released on 2009-07-30 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: A graduate textbook that provides a unified treatment of machine learning methods and their applications in the environmental sciences.
Book Synopsis Modeling, Machine Learning and Astronomy by : Snehanshu Saha
Download or read book Modeling, Machine Learning and Astronomy written by Snehanshu Saha and published by Springer Nature. This book was released on 2021-01-12 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the First International Conference on Modeling, Machine Learning and Astronomy, MMLA 2019, held in Bangalore, India, in November 2019. The 11 full papers and 3 short papers presented in this volume were carefully reviewed and selected from 63 submissions. They are organized in topical sections on modeling and foundations; machine learning applications; astronomy and astroinformatics.
Book Synopsis Big-Data-Analytics in Astronomy, Science, and Engineering by : Shelly Sachdeva
Download or read book Big-Data-Analytics in Astronomy, Science, and Engineering written by Shelly Sachdeva and published by Springer Nature. This book was released on 2022-02-17 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the 9th International Conference on Big Data Analytics, BDA 2021, which took place virtually during December 7–9, 2021. The 15 full papers and 1 short paper included in this volume were carefully reviewed and selected from 60 submissions. They were organized in topical sections as follows: Data science: systems; data science: architectures; big data analytics in healthcare support systems, information interchange of web data resources; and business analytics.
Book Synopsis Practical Machine Learning for Data Analysis Using Python by : Abdulhamit Subasi
Download or read book Practical Machine Learning for Data Analysis Using Python written by Abdulhamit Subasi and published by Academic Press. This book was released on 2020-06-05 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Practical Machine Learning for Data Analysis Using Python is a problem solver's guide for creating real-world intelligent systems. It provides a comprehensive approach with concepts, practices, hands-on examples, and sample code. The book teaches readers the vital skills required to understand and solve different problems with machine learning. It teaches machine learning techniques necessary to become a successful practitioner, through the presentation of real-world case studies in Python machine learning ecosystems. The book also focuses on building a foundation of machine learning knowledge to solve different real-world case studies across various fields, including biomedical signal analysis, healthcare, security, economics, and finance. Moreover, it covers a wide range of machine learning models, including regression, classification, and forecasting. The goal of the book is to help a broad range of readers, including IT professionals, analysts, developers, data scientists, engineers, and graduate students, to solve their own real-world problems. - Offers a comprehensive overview of the application of machine learning tools in data analysis across a wide range of subject areas - Teaches readers how to apply machine learning techniques to biomedical signals, financial data, and healthcare data - Explores important classification and regression algorithms as well as other machine learning techniques - Explains how to use Python to handle data extraction, manipulation, and exploration techniques, as well as how to visualize data spread across multiple dimensions and extract useful features