Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
On Schwarz Methods For Nonlinear Elliptic Partial Differential Equations
Download On Schwarz Methods For Nonlinear Elliptic Partial Differential Equations full books in PDF, epub, and Kindle. Read online On Schwarz Methods For Nonlinear Elliptic Partial Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Adaptive wavelet frame methods for nonlinear elliptic problems by : Jens Kappei
Download or read book Adaptive wavelet frame methods for nonlinear elliptic problems written by Jens Kappei and published by Logos Verlag Berlin GmbH. This book was released on 2012-02-06 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last ten years, adaptive wavelet methods have turned out to be a powerful tool in the numerical treatment of operator equations given on a bounded domain or closed manifold. In this work, we consider semi-nonlinear operator equations, including an elliptic linear operator as well as a nonlinear monotone one. Since the classical approach to construct a wavelet Riesz basis for the solution space is still afflicted with some notable problems, we use the weaker concept of wavelet frames to design an adaptive algorithm for the numerical solution of problems of this type. Choosing an appropriate overlapping decomposition of the given domain, a suitable frame system can be constructed easily. Applying it to the given continuous problem yields a discrete, bi-infinite nonlinear system of equations, which is shown to be solvable by a damped Richardson iteration method. We then successively introduce all building blocks for the numerical implementation of the iteration method. Here, we concentrate on the evaluation of the discrete nonlinearity, where we show that the previously developed auxiliary of tree-structured index sets can be generalized to the wavelet frame setting in a proper way. This allows an effective numerical treatment of the nonlinearity by so-called aggregated trees. Choosing the error tolerances appropriately, we show that our adaptive scheme is asymptotically optimal with respect to aggregated tree-structured index sets, i.e., it realizes the same convergence rate as the sequence of best N-term frame approximations of the solution respecting aggregated trees. Moreover, under the assumption of a sufficiently precise numerical quadrature method, the computational cost of our algorithm stays the same order as the number of wavelets used by it. The theoretical results are widely confirmed by one- and two-dimensional test problems over non-trivial bounded domains.
Book Synopsis Numerical Methods for Nonlinear Elliptic Differential Equations by : Klaus Böhmer
Download or read book Numerical Methods for Nonlinear Elliptic Differential Equations written by Klaus Böhmer and published by Oxford University Press. This book was released on 2010-10-07 with total page 775 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boehmer systmatically handles the different numerical methods for nonlinear elliptic problems.
Book Synopsis Adaptive Wavelet Schwarz Methods for Nonlinear Elliptic Partial Differential Equations by : Dominik Lellek
Download or read book Adaptive Wavelet Schwarz Methods for Nonlinear Elliptic Partial Differential Equations written by Dominik Lellek and published by . This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Adaptive wavelet methods have recently proven to be a very powerful instrument for the numerical treatment of nonlinear partial differential equations. In many cases, these methods can be shown to converge with an optimal rate with respect to the degrees of freedom and in linear complexity. In this thesis, we couple such algorithms with nonlinear Schwarz domain decomposition techniques. With this approach, we can develop efficient parallel adaptive wavelet Schwarz methods for a class of nonlinear problems and prove their convergence and optimality. We support the theoretical findings with instructive numerical experiments. In addition, we present how these techniques can be applied to the stationary, incompressible Navier-Stokes equation. Furthermore, we couple the adaptive wavelet Schwarz methods with a Newton-type method.
Book Synopsis Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations by : Vicentiu D. Radulescu
Download or read book Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations written by Vicentiu D. Radulescu and published by Hindawi Publishing Corporation. This book was released on 2008 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to the mathematical theory of nonlinear problems described by elliptic partial differential equations. These equations can be seen as nonlinear versions of the classical Laplace equation, and they appear as mathematical models in different branches of physics, chemistry, biology, genetics, and engineering and are also relevant in differential geometry and relativistic physics. Much of the modern theory of such equations is based on the calculus of variations and functional analysis. Concentrating on single-valued or multivalued elliptic equations with nonlinearities of various types, the aim of this volume is to obtain sharp existence or nonexistence results, as well as decay rates for general classes of solutions. Many technically relevant questions are presented and analyzed in detail. A systematic picture of the most relevant phenomena is obtained for the equations under study, including bifurcation, stability, asymptotic analysis, and optimal regularity of solutions. The method of presentation should appeal to readers with different backgrounds in functional analysis and nonlinear partial differential equations. All chapters include detailed heuristic arguments providing thorough motivation of the study developed later on in the text, in relationship with concrete processes arising in applied sciences. A systematic description of the most relevant singular phenomena described in this volume includes existence (or nonexistence) of solutions, unicity or multiplicity properties, bifurcation and asymptotic analysis, and optimal regularity. The book includes an extensive bibliography and a rich index, thus allowing for quick orientation among the vast collection of literature on the mathematical theory of nonlinear phenomena described by elliptic partial differential equations.
Book Synopsis Nonlinear Elliptic Partial Differential Equations by : Hervé Le Dret
Download or read book Nonlinear Elliptic Partial Differential Equations written by Hervé Le Dret and published by Springer. This book was released on 2018-05-25 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents the essential parts of the modern theory of nonlinear partial differential equations, including the calculus of variations. After a short review of results in real and functional analysis, the author introduces the main mathematical techniques for solving both semilinear and quasilinear elliptic PDEs, and the associated boundary value problems. Key topics include infinite dimensional fixed point methods, the Galerkin method, the maximum principle, elliptic regularity, and the calculus of variations. Aimed at graduate students and researchers, this textbook contains numerous examples and exercises and provides several comments and suggestions for further study.
Book Synopsis Numerical Analysis of Partial Differential Equations by : S. H, Lui
Download or read book Numerical Analysis of Partial Differential Equations written by S. H, Lui and published by John Wiley & Sons. This book was released on 2012-01-10 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: A balanced guide to the essential techniques for solving elliptic partial differential equations Numerical Analysis of Partial Differential Equations provides a comprehensive, self-contained treatment of the quantitative methods used to solve elliptic partial differential equations (PDEs), with a focus on the efficiency as well as the error of the presented methods. The author utilizes coverage of theoretical PDEs, along with the nu merical solution of linear systems and various examples and exercises, to supply readers with an introduction to the essential concepts in the numerical analysis of PDEs. The book presents the three main discretization methods of elliptic PDEs: finite difference, finite elements, and spectral methods. Each topic has its own devoted chapters and is discussed alongside additional key topics, including: The mathematical theory of elliptic PDEs Numerical linear algebra Time-dependent PDEs Multigrid and domain decomposition PDEs posed on infinite domains The book concludes with a discussion of the methods for nonlinear problems, such as Newton's method, and addresses the importance of hands-on work to facilitate learning. Each chapter concludes with a set of exercises, including theoretical and programming problems, that allows readers to test their understanding of the presented theories and techniques. In addition, the book discusses important nonlinear problems in many fields of science and engineering, providing information as to how they can serve as computing projects across various disciplines. Requiring only a preliminary understanding of analysis, Numerical Analysis of Partial Differential Equations is suitable for courses on numerical PDEs at the upper-undergraduate and graduate levels. The book is also appropriate for students majoring in the mathematical sciences and engineering.
Book Synopsis Domain Decomposition Methods 10 by : Jan Mandel
Download or read book Domain Decomposition Methods 10 written by Jan Mandel and published by American Mathematical Soc.. This book was released on 1998 with total page 569 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the Tenth International Conference on Domain Decomposition Methods, which focused on the latest developments in realistic applications in structural mechanics, structural dynamics, computational fluid dynamics, and heat transfer. The proceedings of these conferences have become standard references in the field and contain seminal papers as well as the latest theoretical results and reports on practical applications.
Book Synopsis Numerical Methods for Elliptic and Parabolic Partial Differential Equations by : Peter Knabner
Download or read book Numerical Methods for Elliptic and Parabolic Partial Differential Equations written by Peter Knabner and published by Springer Science & Business Media. This book was released on 2003-06-26 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.
Book Synopsis Elliptic Partial Differential Equations by : Vitaly Volpert
Download or read book Elliptic Partial Differential Equations written by Vitaly Volpert and published by Springer Science & Business Media. This book was released on 2011-03-03 with total page 649 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of elliptic partial differential equations has undergone an important development over the last two centuries. Together with electrostatics, heat and mass diffusion, hydrodynamics and many other applications, it has become one of the most richly enhanced fields of mathematics. This monograph undertakes a systematic presentation of the theory of general elliptic operators. The author discusses a priori estimates, normal solvability, the Fredholm property, the index of an elliptic operator, operators with a parameter, and nonlinear Fredholm operators. Particular attention is paid to elliptic problems in unbounded domains which have not yet been sufficiently treated in the literature and which require some special approaches. The book also contains an analysis of non-Fredholm operators and discrete operators as well as extensive historical and bibliographical comments . The selected topics and the author's level of discourse will make this book a most useful resource for researchers and graduate students working in the broad field of partial differential equations and applications.
Book Synopsis Domain Decomposition Methods - Algorithms and Theory by : Andrea Toselli
Download or read book Domain Decomposition Methods - Algorithms and Theory written by Andrea Toselli and published by Springer Science & Business Media. This book was released on 2006-06-20 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a comprehensive presentation of some of the most successful and popular domain decomposition preconditioners for finite and spectral element approximations of partial differential equations. It places strong emphasis on both algorithmic and mathematical aspects. It covers in detail important methods such as FETI and balancing Neumann-Neumann methods and algorithms for spectral element methods.
Book Synopsis Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48) by : Kari Astala
Download or read book Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48) written by Kari Astala and published by Princeton University Press. This book was released on 2009-01-18 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.
Book Synopsis Parallel Numerical Algorithms by : David E. Keyes
Download or read book Parallel Numerical Algorithms written by David E. Keyes and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this volume, designed for computational scientists and engineers working on applications requiring the memories and processing rates of large-scale parallelism, leading algorithmicists survey their own field-defining contributions, together with enough historical and bibliographical perspective to permit working one's way to the frontiers. This book is distinguished from earlier surveys in parallel numerical algorithms by its extension of coverage beyond core linear algebraic methods into tools more directly associated with partial differential and integral equations - though still with an appealing generality - and by its focus on practical medium-granularity parallelism, approachable through traditional programming languages. Several of the authors used their invitation to participate as a chance to stand back and create a unified overview, which nonspecialists will appreciate.
Download or read book ESAIM. written by and published by . This book was released on 2005 with total page 674 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Partial Differential Equations by : Walter A. Strauss
Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.
Book Synopsis Numerical Solution of Nonlinear Elliptic Problems Via Preconditioning Operators by : István Faragó
Download or read book Numerical Solution of Nonlinear Elliptic Problems Via Preconditioning Operators written by István Faragó and published by Nova Publishers. This book was released on 2002 with total page 424 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Solution of Nonlinear Elliptic Problems Via Preconditioning Operators - Theory & Applications
Book Synopsis Domain Decomposition Methods in Science and Engineering XX by : Randolph Bank
Download or read book Domain Decomposition Methods in Science and Engineering XX written by Randolph Bank and published by Springer Science & Business Media. This book was released on 2013-07-03 with total page 702 pages. Available in PDF, EPUB and Kindle. Book excerpt: These are the proceedings of the 20th international conference on domain decomposition methods in science and engineering. Domain decomposition methods are iterative methods for solving the often very large linearor nonlinear systems of algebraic equations that arise when various problems in continuum mechanics are discretized using finite elements. They are designed for massively parallel computers and take the memory hierarchy of such systems in mind. This is essential for approaching peak floating point performance. There is an increasingly well developed theory whichis having a direct impact on the development and improvements of these algorithms.
Book Synopsis Domain Decomposition Methods in Scientific and Engineering Computing by : David E. Keyes
Download or read book Domain Decomposition Methods in Scientific and Engineering Computing written by David E. Keyes and published by American Mathematical Soc.. This book was released on 1994 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains proceedings from the Seventh International Conference on Domain Decomposition Methods, held at Pennsylvania State University in October 1993. The term ``domain decomposition'' has for nearly a decade been associated with the partly iterative, partly direct algorithms explored in the proceedings of this conference. Noteworthy trends in the current volume include progress in dealing with so-called ``bad parameters'' in elliptic partial differential equation problems, as well as developments in partial differential equations outside of the elliptically-dominated framework. Also described here are convergence and complexity results for novel discretizations, which bring with them new challenges in the derivation of appropriate operators for coarsened spaces. Implementations and architectural considerations are discussed, as well as partitioning tools and environments. In addition, the book describes a wide array of applications, from semiconductor device simulation to structural mechanics to aerodynamics. Presenting many of the latest results in the field, this book offers readers an up-to-date guide to the many facets of the theory and practice of domain decomposition.