Obstruction Theory

Download Obstruction Theory PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540359796
Total Pages : 398 pages
Book Rating : 4.5/5 (43 download)

DOWNLOAD NOW!


Book Synopsis Obstruction Theory by : H. J. Baues

Download or read book Obstruction Theory written by H. J. Baues and published by Springer. This book was released on 2006-11-15 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Lecture Notes in Algebraic Topology

Download Lecture Notes in Algebraic Topology PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 9780821872208
Total Pages : 388 pages
Book Rating : 4.8/5 (722 download)

DOWNLOAD NOW!


Book Synopsis Lecture Notes in Algebraic Topology by : James F. Davis and Paul Kirk

Download or read book Lecture Notes in Algebraic Topology written by James F. Davis and Paul Kirk and published by American Mathematical Soc.. This book was released on with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic andgeometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, someknowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstructiontheory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to presentproofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the ``big picture'', teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, andhomological algebra. The exposition in the text is clear; special cases are presented over complex general statements.

Lagrangian Intersection Floer Theory

Download Lagrangian Intersection Floer Theory PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821852507
Total Pages : 426 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Lagrangian Intersection Floer Theory by : Kenji Fukaya

Download or read book Lagrangian Intersection Floer Theory written by Kenji Fukaya and published by American Mathematical Soc.. This book was released on 2010-06-21 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a two-volume series research monograph on the general Lagrangian Floer theory and on the accompanying homological algebra of filtered $A_\infty$-algebras. This book provides the most important step towards a rigorous foundation of the Fukaya category in general context. In Volume I, general deformation theory of the Floer cohomology is developed in both algebraic and geometric contexts. An essentially self-contained homotopy theory of filtered $A_\infty$ algebras and $A_\infty$ bimodules and applications of their obstruction-deformation theory to the Lagrangian Floer theory are presented. Volume II contains detailed studies of two of the main points of the foundation of the theory: transversality and orientation. The study of transversality is based on the virtual fundamental chain techniques (the theory of Kuranishi structures and their multisections) and chain level intersection theories. A detailed analysis comparing the orientations of the moduli spaces and their fiber products is carried out. A self-contained account of the general theory of Kuranishi structures is also included in the appendix of this volume.

Algebraic Topology

Download Algebraic Topology PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1468493221
Total Pages : 502 pages
Book Rating : 4.4/5 (684 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Topology by : Edwin H. Spanier

Download or read book Algebraic Topology written by Edwin H. Spanier and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 502 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book surveys the fundamental ideas of algebraic topology. The first part covers the fundamental group, its definition and application in the study of covering spaces. The second part turns to homology theory including cohomology, cup products, cohomology operations and topological manifolds. The final part is devoted to Homotropy theory, including basic facts about homotropy groups and applications to obstruction theory.

Deformation Theory

Download Deformation Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1441915958
Total Pages : 241 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Deformation Theory by : Robin Hartshorne

Download or read book Deformation Theory written by Robin Hartshorne and published by Springer Science & Business Media. This book was released on 2009-12-10 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: The basic problem of deformation theory in algebraic geometry involves watching a small deformation of one member of a family of objects, such as varieties, or subschemes in a fixed space, or vector bundles on a fixed scheme. In this new book, Robin Hartshorne studies first what happens over small infinitesimal deformations, and then gradually builds up to more global situations, using methods pioneered by Kodaira and Spencer in the complex analytic case, and adapted and expanded in algebraic geometry by Grothendieck. The author includes numerous exercises, as well as important examples illustrating various aspects of the theory. This text is based on a graduate course taught by the author at the University of California, Berkeley.

Recent Progress on the Donaldson–Thomas Theory

Download Recent Progress on the Donaldson–Thomas Theory PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811678383
Total Pages : 110 pages
Book Rating : 4.8/5 (116 download)

DOWNLOAD NOW!


Book Synopsis Recent Progress on the Donaldson–Thomas Theory by : Yukinobu Toda

Download or read book Recent Progress on the Donaldson–Thomas Theory written by Yukinobu Toda and published by Springer Nature. This book was released on 2021-12-15 with total page 110 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an exposition of recent progress on the Donaldson–Thomas (DT) theory. The DT invariant was introduced by R. Thomas in 1998 as a virtual counting of stable coherent sheaves on Calabi–Yau 3-folds. Later, it turned out that the DT invariants have many interesting properties and appear in several contexts such as the Gromov–Witten/Donaldson–Thomas conjecture on curve-counting theories, wall-crossing in derived categories with respect to Bridgeland stability conditions, BPS state counting in string theory, and others. Recently, a deeper structure of the moduli spaces of coherent sheaves on Calabi–Yau 3-folds was found through derived algebraic geometry. These moduli spaces admit shifted symplectic structures and the associated d-critical structures, which lead to refined versions of DT invariants such as cohomological DT invariants. The idea of cohomological DT invariants led to a mathematical definition of the Gopakumar–Vafa invariant, which was first proposed by Gopakumar–Vafa in 1998, but its precise mathematical definition has not been available until recently. This book surveys the recent progress on DT invariants and related topics, with a focus on applications to curve-counting theories.

A Theory of Generalized Donaldson-Thomas Invariants

Download A Theory of Generalized Donaldson-Thomas Invariants PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821852795
Total Pages : 212 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis A Theory of Generalized Donaldson-Thomas Invariants by : Dominic D. Joyce

Download or read book A Theory of Generalized Donaldson-Thomas Invariants written by Dominic D. Joyce and published by American Mathematical Soc.. This book was released on 2011 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book studies generalized Donaldson-Thomas invariants $\bar{DT}{}^\alpha(\tau)$. They are rational numbers which `count' both $\tau$-stable and $\tau$-semistable coherent sheaves with Chern character $\alpha$ on $X$; strictly $\tau$-semistable sheaves must be counted with complicated rational weights. The $\bar{DT}{}^\alpha(\tau)$ are defined for all classes $\alpha$, and are equal to $DT^\alpha(\tau)$ when it is defined. They are unchanged under deformations of $X$, and transform by a wall-crossing formula under change of stability condition $\tau$. To prove all this, the authors study the local structure of the moduli stack $\mathfrak M$ of coherent sheaves on $X$. They show that an atlas for $\mathfrak M$ may be written locally as $\mathrm{Crit}(f)$ for $f:U\to{\mathbb C}$ holomorphic and $U$ smooth, and use this to deduce identities on the Behrend function $\nu_\mathfrak M$. They compute the invariants $\bar{DT}{}^\alpha(\tau)$ in examples, and make a conjecture about their integrality properties. They also extend the theory to abelian categories $\mathrm{mod}$-$\mathbb{C}Q\backslash I$ of representations of a quiver $Q$ with relations $I$ coming from a superpotential $W$ on $Q$.

Lie Methods in Deformation Theory

Download Lie Methods in Deformation Theory PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811911851
Total Pages : 576 pages
Book Rating : 4.8/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Lie Methods in Deformation Theory by : Marco Manetti

Download or read book Lie Methods in Deformation Theory written by Marco Manetti and published by Springer Nature. This book was released on 2022-08-01 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book furnishes a comprehensive treatment of differential graded Lie algebras, L-infinity algebras, and their use in deformation theory. We believe it is the first textbook devoted to this subject, although the first chapters are also covered in other sources with a different perspective. Deformation theory is an important subject in algebra and algebraic geometry, with an origin that dates back to Kodaira, Spencer, Kuranishi, Gerstenhaber, and Grothendieck. In the last 30 years, a new approach, based on ideas from rational homotopy theory, has made it possible not only to solve long-standing open problems, but also to clarify the general theory and to relate apparently different features. This approach works over a field of characteristic 0, and the central role is played by the notions of differential graded Lie algebra, L-infinity algebra, and Maurer–Cartan equations. The book is written keeping in mind graduate students with a basic knowledge of homological algebra and complex algebraic geometry as utilized, for instance, in the book by K. Kodaira, Complex Manifolds and Deformation of Complex Structures. Although the main applications in this book concern deformation theory of complex manifolds, vector bundles, and holomorphic maps, the underlying algebraic theory also applies to a wider class of deformation problems, and it is a prerequisite for anyone interested in derived deformation theory. Researchers in algebra, algebraic geometry, algebraic topology, deformation theory, and noncommutative geometry are the major targets for the book.

An Invitation to Modern Enumerative Geometry

Download An Invitation to Modern Enumerative Geometry PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 303111499X
Total Pages : 310 pages
Book Rating : 4.0/5 (311 download)

DOWNLOAD NOW!


Book Synopsis An Invitation to Modern Enumerative Geometry by : Andrea T. Ricolfi

Download or read book An Invitation to Modern Enumerative Geometry written by Andrea T. Ricolfi and published by Springer Nature. This book was released on 2022-12-14 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is based on a series of lectures given by the author at SISSA, Trieste, within the PhD courses Techniques in enumerative geometry (2019) and Localisation in enumerative geometry (2021). The goal of this book is to provide a gentle introduction, aimed mainly at graduate students, to the fast-growing subject of enumerative geometry and, more specifically, counting invariants in algebraic geometry. In addition to the more advanced techniques explained and applied in full detail to concrete calculations, the book contains the proofs of several background results, important for the foundations of the theory. In this respect, this text is conceived for PhD students or research “beginners” in the field of enumerative geometry or related areas. This book can be read as an introduction to Hilbert schemes and Quot schemes on 3-folds but also as an introduction to localisation formulae in enumerative geometry. It is meant to be accessible without a strong background in algebraic geometry; however, three appendices (one on deformation theory, one on intersection theory, one on virtual fundamental classes) are meant to help the reader dive deeper into the main material of the book and to make the text itself as self-contained as possible.

Singularities, Mirror Symmetry, and the Gauged Linear Sigma Model

Download Singularities, Mirror Symmetry, and the Gauged Linear Sigma Model PDF Online Free

Author :
Publisher : American Mathematical Society
ISBN 13 : 1470457008
Total Pages : 203 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Singularities, Mirror Symmetry, and the Gauged Linear Sigma Model by : Tyler J. Jarvis

Download or read book Singularities, Mirror Symmetry, and the Gauged Linear Sigma Model written by Tyler J. Jarvis and published by American Mathematical Society. This book was released on 2021-02-26 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the workshop Crossing the Walls in Enumerative Geometry, held in May 2018 at Snowbird, Utah. It features a collection of both expository and research articles about mirror symmetry, quantized singularity theory (FJRW theory), and the gauged linear sigma model. Most of the expository works are based on introductory lecture series given at the workshop and provide an approachable introduction for graduate students to some fundamental topics in mirror symmetry and singularity theory, including quasimaps, localization, the gauged linear sigma model (GLSM), virtual classes, cosection localization, $p$-fields, and Saito's primitive forms. These articles help readers bridge the gap from the standard graduate curriculum in algebraic geometry to exciting cutting-edge research in the field. The volume also contains several research articles by leading researchers, showcasing new developments in the field.

Algebraic Geometry

Download Algebraic Geometry PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821847031
Total Pages : 539 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Algebraic Geometry by : Dan Abramovich

Download or read book Algebraic Geometry written by Dan Abramovich and published by American Mathematical Soc.. This book was released on 2009 with total page 539 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers information on various technical tools, from jet schemes and derived categories to algebraic stacks. This book delves into the geometry of various moduli spaces, including those of stable curves, stable maps, coherent sheaves, and abelian varieties. It describes various advances in higher-dimensional bi rational geometry.

A Course on Surgery Theory

Download A Course on Surgery Theory PDF Online Free

Author :
Publisher : Princeton University Press
ISBN 13 : 0691200351
Total Pages : 472 pages
Book Rating : 4.6/5 (912 download)

DOWNLOAD NOW!


Book Synopsis A Course on Surgery Theory by : Stanley Chang

Download or read book A Course on Surgery Theory written by Stanley Chang and published by Princeton University Press. This book was released on 2021-01-26 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: An advanced treatment of surgery theory for graduate students and researchers Surgery theory, a subfield of geometric topology, is the study of the classifications of manifolds. A Course on Surgery Theory offers a modern look at this important mathematical discipline and some of its applications. In this book, Stanley Chang and Shmuel Weinberger explain some of the triumphs of surgery theory during the past three decades, from both an algebraic and geometric point of view. They also provide an extensive treatment of basic ideas, main theorems, active applications, and recent literature. The authors methodically cover all aspects of surgery theory, connecting it to other relevant areas of mathematics, including geometry, homotopy theory, analysis, and algebra. Later chapters are self-contained, so readers can study them directly based on topic interest. Of significant use to high-dimensional topologists and researchers in noncommutative geometry and algebraic K-theory, A Course on Surgery Theory serves as an important resource for the mathematics community.

Donaldson Type Invariants for Algebraic Surfaces

Download Donaldson Type Invariants for Algebraic Surfaces PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540939121
Total Pages : 404 pages
Book Rating : 4.5/5 (49 download)

DOWNLOAD NOW!


Book Synopsis Donaldson Type Invariants for Algebraic Surfaces by : Takuro Mochizuki

Download or read book Donaldson Type Invariants for Algebraic Surfaces written by Takuro Mochizuki and published by Springer Science & Business Media. This book was released on 2009-03-26 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: We are defining and studying an algebro-geometric analogue of Donaldson invariants by using moduli spaces of semistable sheaves with arbitrary ranks on a polarized projective surface.We are interested in relations among the invariants, which are natural generalizations of the "wall-crossing formula" and the "Witten conjecture" for classical Donaldson invariants. Our goal is to obtain a weaker version of these relations, by systematically using the intrinsic smoothness of moduli spaces. According to the recent excellent work of L. Goettsche, H. Nakajima and K. Yoshioka, the wall-crossing formula for Donaldson invariants of projective surfaces can be deduced from such a weaker result in the rank two case!

Handbook of Algebraic Topology

Download Handbook of Algebraic Topology PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 0080532985
Total Pages : 1336 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Algebraic Topology by : I.M. James

Download or read book Handbook of Algebraic Topology written by I.M. James and published by Elsevier. This book was released on 1995-07-18 with total page 1336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Algebraic topology (also known as homotopy theory) is a flourishing branch of modern mathematics. It is very much an international subject and this is reflected in the background of the 36 leading experts who have contributed to the Handbook. Written for the reader who already has a grounding in the subject, the volume consists of 27 expository surveys covering the most active areas of research. They provide the researcher with an up-to-date overview of this exciting branch of mathematics.

Introduction to Homotopy Theory

Download Introduction to Homotopy Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 144197329X
Total Pages : 352 pages
Book Rating : 4.4/5 (419 download)

DOWNLOAD NOW!


Book Synopsis Introduction to Homotopy Theory by : Martin Arkowitz

Download or read book Introduction to Homotopy Theory written by Martin Arkowitz and published by Springer Science & Business Media. This book was released on 2011-07-25 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a book in pure mathematics dealing with homotopy theory, one of the main branches of algebraic topology. The principal topics are as follows: Basic Homotopy; H-spaces and co-H-spaces; fibrations and cofibrations; exact sequences of homotopy sets, actions, and coactions; homotopy pushouts and pullbacks; classical theorems, including those of Serre, Hurewicz, Blakers-Massey, and Whitehead; homotopy Sets; homotopy and homology decompositions of spaces and maps; and obstruction theory. The underlying theme of the entire book is the Eckmann-Hilton duality theory. The book can be used as a text for the second semester of an advanced ungraduate or graduate algebraic topology course.

Index Theory, Eta Forms, and Deligne Cohomology

Download Index Theory, Eta Forms, and Deligne Cohomology PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 0821842846
Total Pages : 134 pages
Book Rating : 4.8/5 (218 download)

DOWNLOAD NOW!


Book Synopsis Index Theory, Eta Forms, and Deligne Cohomology by : Ulrich Bunke

Download or read book Index Theory, Eta Forms, and Deligne Cohomology written by Ulrich Bunke and published by American Mathematical Soc.. This book was released on 2009-03-06 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper sets up a language to deal with Dirac operators on manifolds with corners of arbitrary codimension. In particular the author develops a precise theory of boundary reductions. The author introduces the notion of a taming of a Dirac operator as an invertible perturbation by a smoothing operator. Given a Dirac operator on a manifold with boundary faces the author uses the tamings of its boundary reductions in order to turn the operator into a Fredholm operator. Its index is an obstruction against extending the taming from the boundary to the interior. In this way he develops an inductive procedure to associate Fredholm operators to Dirac operators on manifolds with corners and develops the associated obstruction theory.

New Trends in Algebraic Geometry

Download New Trends in Algebraic Geometry PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 9780521646598
Total Pages : 500 pages
Book Rating : 4.6/5 (465 download)

DOWNLOAD NOW!


Book Synopsis New Trends in Algebraic Geometry by : Klaus Hulek

Download or read book New Trends in Algebraic Geometry written by Klaus Hulek and published by Cambridge University Press. This book was released on 1999-05-13 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the outcome of the 1996 Warwick Algebraic Geometry EuroConference, containing 17 survey and research articles selected from the most outstanding contemporary research topics in algebraic geometry. Several of the articles are expository: among these a beautiful short exposition by Paranjape of the new and very simple approach to the resolution of singularities; a detailed essay by Ito and Nakamura on the ubiquitous A,D,E classification, centred around simple surface singularities; a discussion by Morrison of the new special Lagrangian approach to giving geometric foundations to mirror symmetry; and two deep, informative surveys by Siebert and Behrend on Gromow-Witten invariants treating them from the point of view of algebraic and symplectic geometry. The remaining articles cover a wide cross-section of the most significant research topics in algebraic geometry. This includes Gromow-Witten invariants, Hodge theory, Calabi-Yau 3-folds, mirror symmetry and classification of varieties.