Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Numpy Beginners Guide Second Edition
Download Numpy Beginners Guide Second Edition full books in PDF, epub, and Kindle. Read online Numpy Beginners Guide Second Edition ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis NumPy Beginner's Guide (Second Edition) by : Ivan Idris
Download or read book NumPy Beginner's Guide (Second Edition) written by Ivan Idris and published by Packt Publishing Ltd. This book was released on 2013-04-25 with total page 623 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is written in beginner’s guide style with each aspect of NumPy demonstrated with real world examples and required screenshots.If you are a programmer, scientist, or engineer who has basic Python knowledge and would like to be able to do numerical computations with Python, this book is for you. No prior knowledge of NumPy is required.
Download or read book Guide to NumPy written by Travis Oliphant and published by CreateSpace. This book was released on 2015-09-15 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second edition of Travis Oliphant's A Guide to NumPy originally published electronically in 2006. It is designed to be a reference that can be used by practitioners who are familiar with Python but want to learn more about NumPy and related tools. In this updated edition, new perspectives are shared as well as descriptions of new distributed processing tools in the ecosystem, and how Numba can be used to compile code using NumPy arrays. Travis Oliphant is the co-founder and CEO of Continuum Analytics. Continuum Analytics develops Anaconda, the leading modern open source analytics platform powered by Python. Travis, who is a passionate advocate of open source technology, has a Ph.D. from Mayo Clinic and B.S. and M.S. degrees in Mathematics and Electrical Engineering from Brigham Young University. Since 1997, he has worked extensively with Python for computational and data science. He was the primary creator of the NumPy package and founding contributor to the SciPy package. He was also a co-founder and past board member of NumFOCUS, a non-profit for reproducible and accessible science that supports the PyData stack. He also served on the board of the Python Software Foundation.
Book Synopsis Python for Data Analysis by : Wes McKinney
Download or read book Python for Data Analysis written by Wes McKinney and published by "O'Reilly Media, Inc.". This book was released on 2017-09-25 with total page 553 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get complete instructions for manipulating, processing, cleaning, and crunching datasets in Python. Updated for Python 3.6, the second edition of this hands-on guide is packed with practical case studies that show you how to solve a broad set of data analysis problems effectively. You’ll learn the latest versions of pandas, NumPy, IPython, and Jupyter in the process. Written by Wes McKinney, the creator of the Python pandas project, this book is a practical, modern introduction to data science tools in Python. It’s ideal for analysts new to Python and for Python programmers new to data science and scientific computing. Data files and related material are available on GitHub. Use the IPython shell and Jupyter notebook for exploratory computing Learn basic and advanced features in NumPy (Numerical Python) Get started with data analysis tools in the pandas library Use flexible tools to load, clean, transform, merge, and reshape data Create informative visualizations with matplotlib Apply the pandas groupby facility to slice, dice, and summarize datasets Analyze and manipulate regular and irregular time series data Learn how to solve real-world data analysis problems with thorough, detailed examples
Book Synopsis Learning SciPy for Numerical and Scientific Computing - Second Edition by : Sergio J. Rojas G.
Download or read book Learning SciPy for Numerical and Scientific Computing - Second Edition written by Sergio J. Rojas G. and published by Packt Publishing Ltd. This book was released on 2015-02-26 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book targets programmers and scientists who have basic Python knowledge and who are keen to perform scientific and numerical computations with SciPy.
Download or read book NumPy Cookbook written by Ivan Idris and published by Packt Publishing Ltd. This book was released on 2012-10-25 with total page 357 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written in Cookbook style, the code examples will take your Numpy skills to the next level. This book will take Python developers with basic Numpy skills to the next level through some practical recipes.
Book Synopsis Learn Python Programming by : Fabrizio Romano
Download or read book Learn Python Programming written by Fabrizio Romano and published by Packt Publishing Ltd. This book was released on 2018-06-29 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the fundamentals of Python (3.7) and how to apply it to data science, programming, and web development. Fully updated to include hands-on tutorials and projects. Key Features Learn the fundamentals of Python programming with interactive projects Apply Python to data science with tools such as IPython and Jupyter Utilize Python for web development and build a real-world app using Django Book DescriptionLearn Python Programming is a quick, thorough, and practical introduction to Python - an extremely flexible and powerful programming language that can be applied to many disciplines. Unlike other books, it doesn't bore you with elaborate explanations of the basics but gets you up-and-running, using the language. You will begin by learning the fundamentals of Python so that you have a rock-solid foundation to build upon. You will explore the foundations of Python programming and learn how Python can be manipulated to achieve results. Explore different programming paradigms and find the best approach to a situation; understand how to carry out performance optimization and effective debugging; control the flow of a program; and utilize an interchange format to exchange data. You'll also walk through cryptographic services in Python and understand secure tokens. Learn Python Programming will give you a thorough understanding of the Python language. You'll learn how to write programs, build websites, and work with data by harnessing Python's renowned data science libraries. Filled with real-world examples and projects, the book covers various types of applications, and concludes by building real-world projects based on the concepts you have learned.What you will learn Get Python up and running on Windows, Mac, and Linux Explore fundamental concepts of coding using data structures and control flow Write elegant, reusable, and efficient code in any situation Understand when to use the functional or OOP approach Cover the basics of security and concurrent/asynchronous programming Create bulletproof, reliable software by writing tests Build a simple website in Django Fetch, clean, and manipulate data Who this book is for Learn Python Programming is for individuals with relatively little experience in coding or Python. It's also ideal for aspiring programmers who need to write scripts or programs to accomplish tasks. The book shows you how to create a full-fledged application.
Book Synopsis Python Data Science Handbook by : Jake VanderPlas
Download or read book Python Data Science Handbook written by Jake VanderPlas and published by "O'Reilly Media, Inc.". This book was released on 2016-11-21 with total page 609 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms
Download or read book SciPy and NumPy written by Eli Bressert and published by "O'Reilly Media, Inc.". This book was released on 2012 with total page 68 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Optimizing and boosting your Python programming"--Cover.
Book Synopsis NumPy: Beginner's Guide by : Ivan Idris
Download or read book NumPy: Beginner's Guide written by Ivan Idris and published by Packt Publishing Ltd. This book was released on 2015-06-24 with total page 348 pages. Available in PDF, EPUB and Kindle. Book excerpt: In today's world of science and technology, it's all about speed and flexibility. When it comes to scientific computing, NumPy tops the list. NumPy will give you both speed and high productivity. This book will walk you through NumPy with clear, step-by-step examples and just the right amount of theory. The book focuses on the fundamentals of NumPy, including array objects, functions, and matrices, each of them explained with practical examples. You will then learn about different NumPy modules while performing mathematical operations such as calculating the Fourier transform, finding the inverse of a matrix, and determining eigenvalues, among many others. This book is a one-stop solution to knowing the ins and outs of the vast NumPy library, empowering you to use its wide range of mathematical features to build efficient, high-speed programs.
Book Synopsis Python Data Analysis Cookbook by : Ivan Idris
Download or read book Python Data Analysis Cookbook written by Ivan Idris and published by Packt Publishing Ltd. This book was released on 2016-07-22 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 140 practical recipes to help you make sense of your data with ease and build production-ready data apps About This Book Analyze Big Data sets, create attractive visualizations, and manipulate and process various data types Packed with rich recipes to help you learn and explore amazing algorithms for statistics and machine learning Authored by Ivan Idris, expert in python programming and proud author of eight highly reviewed books Who This Book Is For This book teaches Python data analysis at an intermediate level with the goal of transforming you from journeyman to master. Basic Python and data analysis skills and affinity are assumed. What You Will Learn Set up reproducible data analysis Clean and transform data Apply advanced statistical analysis Create attractive data visualizations Web scrape and work with databases, Hadoop, and Spark Analyze images and time series data Mine text and analyze social networks Use machine learning and evaluate the results Take advantage of parallelism and concurrency In Detail Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You'll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios. Style and Approach The book is written in “cookbook” style striving for high realism in data analysis. Through the recipe-based format, you can read each recipe separately as required and immediately apply the knowledge gained.
Book Synopsis Learning NumPy Array by : Ivan Idris
Download or read book Learning NumPy Array written by Ivan Idris and published by Packt Publishing Ltd. This book was released on 2014-06-13 with total page 254 pages. Available in PDF, EPUB and Kindle. Book excerpt: A step-by-step guide, packed with examples of practical numerical analysis that will give you a comprehensive, but concise overview of NumPy. This book is for programmers, scientists, or engineers, who have basic Python knowledge and would like to be able to do numerical computations with Python.
Book Synopsis Numerical Python by : Robert Johansson
Download or read book Numerical Python written by Robert Johansson and published by Apress. This book was released on 2018-12-24 with total page 709 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage the numerical and mathematical modules in Python and its standard library as well as popular open source numerical Python packages like NumPy, SciPy, FiPy, matplotlib and more. This fully revised edition, updated with the latest details of each package and changes to Jupyter projects, demonstrates how to numerically compute solutions and mathematically model applications in big data, cloud computing, financial engineering, business management and more. Numerical Python, Second Edition, presents many brand-new case study examples of applications in data science and statistics using Python, along with extensions to many previous examples. Each of these demonstrates the power of Python for rapid development and exploratory computing due to its simple and high-level syntax and multiple options for data analysis. After reading this book, readers will be familiar with many computing techniques including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling and machine learning. What You'll Learn Work with vectors and matrices using NumPy Plot and visualize data with Matplotlib Perform data analysis tasks with Pandas and SciPy Review statistical modeling and machine learning with statsmodels and scikit-learn Optimize Python code using Numba and Cython Who This Book Is For Developers who want to understand how to use Python and its related ecosystem for numerical computing.
Book Synopsis Python Data Analysis by : Armando Fandango
Download or read book Python Data Analysis written by Armando Fandango and published by Packt Publishing Ltd. This book was released on 2017-03-27 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn how to apply powerful data analysis techniques with popular open source Python modules About This Book Find, manipulate, and analyze your data using the Python 3.5 libraries Perform advanced, high-performance linear algebra and mathematical calculations with clean and efficient Python code An easy-to-follow guide with realistic examples that are frequently used in real-world data analysis projects. Who This Book Is For This book is for programmers, scientists, and engineers who have the knowledge of Python and know the basics of data science. It is for those who wish to learn different data analysis methods using Python 3.5 and its libraries. This book contains all the basic ingredients you need to become an expert data analyst. What You Will Learn Install open source Python modules such NumPy, SciPy, Pandas, stasmodels, scikit-learn,theano, keras, and tensorflow on various platforms Prepare and clean your data, and use it for exploratory analysis Manipulate your data with Pandas Retrieve and store your data from RDBMS, NoSQL, and distributed filesystems such as HDFS and HDF5 Visualize your data with open source libraries such as matplotlib, bokeh, and plotly Learn about various machine learning methods such as supervised, unsupervised, probabilistic, and Bayesian Understand signal processing and time series data analysis Get to grips with graph processing and social network analysis In Detail Data analysis techniques generate useful insights from small and large volumes of data. Python, with its strong set of libraries, has become a popular platform to conduct various data analysis and predictive modeling tasks. With this book, you will learn how to process and manipulate data with Python for complex analysis and modeling. We learn data manipulations such as aggregating, concatenating, appending, cleaning, and handling missing values, with NumPy and Pandas. The book covers how to store and retrieve data from various data sources such as SQL and NoSQL, CSV fies, and HDF5. We learn how to visualize data using visualization libraries, along with advanced topics such as signal processing, time series, textual data analysis, machine learning, and social media analysis. The book covers a plethora of Python modules, such as matplotlib, statsmodels, scikit-learn, and NLTK. It also covers using Python with external environments such as R, Fortran, C/C++, and Boost libraries. Style and approach The book takes a very comprehensive approach to enhance your understanding of data analysis. Sufficient real-world examples and use cases are included in the book to help you grasp the concepts quickly and apply them easily in your day-to-day work. Packed with clear, easy to follow examples, this book will turn you into an ace data analyst in no time.
Book Synopsis Python for Data Science by : Erick Thompson
Download or read book Python for Data Science written by Erick Thompson and published by . This book was released on 2020-10-30 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Building Machine Learning Systems with Python by : Luis Pedro Coelho
Download or read book Building Machine Learning Systems with Python written by Luis Pedro Coelho and published by Packt Publishing Ltd. This book was released on 2018-07-31 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get more from your data by creating practical machine learning systems with Python Key Features Develop your own Python-based machine learning system Discover how Python offers multiple algorithms for modern machine learning systems Explore key Python machine learning libraries to implement in your projects Book Description Machine learning allows systems to learn things without being explicitly programmed to do so. Python is one of the most popular languages used to develop machine learning applications, which take advantage of its extensive library support. This third edition of Building Machine Learning Systems with Python addresses recent developments in the field by covering the most-used datasets and libraries to help you build practical machine learning systems. Using machine learning to gain deeper insights from data is a key skill required by modern application developers and analysts alike. Python, being a dynamic language, allows for fast exploration and experimentation. This book shows you exactly how to find patterns in your raw data. You will start by brushing up on your Python machine learning knowledge and being introduced to libraries. You'll quickly get to grips with serious, real-world projects on datasets, using modeling and creating recommendation systems. With Building Machine Learning Systems with Python, you’ll gain the tools and understanding required to build your own systems, all tailored to solve real-world data analysis problems. By the end of this book, you will be able to build machine learning systems using techniques and methodologies such as classification, sentiment analysis, computer vision, reinforcement learning, and neural networks. What you will learn Build a classification system that can be applied to text, images, and sound Employ Amazon Web Services (AWS) to run analysis on the cloud Solve problems related to regression using scikit-learn and TensorFlow Recommend products to users based on their past purchases Understand different ways to apply deep neural networks on structured data Address recent developments in the field of computer vision and reinforcement learning Who this book is for Building Machine Learning Systems with Python is for data scientists, machine learning developers, and Python developers who want to learn how to build increasingly complex machine learning systems. You will use Python's machine learning capabilities to develop effective solutions. Prior knowledge of Python programming is expected.
Book Synopsis Building Machine Learning Systems with Python by : Willi Richert
Download or read book Building Machine Learning Systems with Python written by Willi Richert and published by Packt Publishing Ltd. This book was released on 2013-01-01 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a tutorial-driven and practical, but well-grounded book showcasing good Machine Learning practices. There will be an emphasis on using existing technologies instead of showing how to write your own implementations of algorithms. This book is a scenario-based, example-driven tutorial. By the end of the book you will have learnt critical aspects of Machine Learning Python projects and experienced the power of ML-based systems by actually working on them.This book primarily targets Python developers who want to learn about and build Machine Learning into their projects, or who want to pro.
Book Synopsis Scientific Computing with Python - Second Edition by : CLAUS. FUHRER
Download or read book Scientific Computing with Python - Second Edition written by CLAUS. FUHRER and published by . This book was released on 2021-07-23 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leverage this example-packed, comprehensive guide for all your Python computational needs Key Features: Learn the first steps within Python to highly specialized concepts Explore examples and code snippets taken from typical programming situations within scientific computing. Delve into essential computer science concepts like iterating, object-oriented programming, testing, and MPI presented in strong connection to applications within scientific computing. Book Description: Python has tremendous potential within the scientific computing domain. This updated edition of Scientific Computing with Python features new chapters on graphical user interfaces, efficient data processing, and parallel computing to help you perform mathematical and scientific computing efficiently using Python. This book will help you to explore new Python syntax features and create different models using scientific computing principles. The book presents Python alongside mathematical applications and demonstrates how to apply Python concepts in computing with the help of examples involving Python 3.8. You'll use pandas for basic data analysis to understand the modern needs of scientific computing, and cover data module improvements and built-in features. You'll also explore numerical computation modules such as NumPy and SciPy, which enable fast access to highly efficient numerical algorithms. By learning to use the plotting module Matplotlib, you will be able to represent your computational results in talks and publications. A special chapter is devoted to SymPy, a tool for bridging symbolic and numerical computations. By the end of this Python book, you'll have gained a solid understanding of task automation and how to implement and test mathematical algorithms within the realm of scientific computing. What You Will Learn: Understand the building blocks of computational mathematics, linear algebra, and related Python objects Use Matplotlib to create high-quality figures and graphics to draw and visualize results Apply object-oriented programming (OOP) to scientific computing in Python Discover how to use pandas to enter the world of data processing Handle exceptions for writing reliable and usable code Cover manual and automatic aspects of testing for scientific programming Get to grips with parallel computing to increase computation speed Who this book is for: This book is for students with a mathematical background, university teachers designing modern courses in programming, data scientists, researchers, developers, and anyone who wants to perform scientific computation in Python.