Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Numerical Solution Of Volterra Integro Differential Equations With An Unbounded Delay
Download Numerical Solution Of Volterra Integro Differential Equations With An Unbounded Delay full books in PDF, epub, and Kindle. Read online Numerical Solution Of Volterra Integro Differential Equations With An Unbounded Delay ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Collocation Methods for Volterra Integral and Related Functional Differential Equations by : Hermann Brunner
Download or read book Collocation Methods for Volterra Integral and Related Functional Differential Equations written by Hermann Brunner and published by Cambridge University Press. This book was released on 2004-11-15 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: Collocation based on piecewise polynomial approximation represents a powerful class of methods for the numerical solution of initial-value problems for functional differential and integral equations arising in a wide spectrum of applications, including biological and physical phenomena. The present book introduces the reader to the general principles underlying these methods and then describes in detail their convergence properties when applied to ordinary differential equations, functional equations with (Volterra type) memory terms, delay equations, and differential-algebraic and integral-algebraic equations. Each chapter starts with a self-contained introduction to the relevant theory of the class of equations under consideration. Numerous exercises and examples are supplied, along with extensive historical and bibliographical notes utilising the vast annotated reference list of over 1300 items. In sum, Hermann Brunner has written a treatise that can serve as an introduction for students, a guide for users, and a comprehensive resource for experts.
Book Synopsis Ordinary Differential Equations and Integral Equations by : C.T.H. Baker
Download or read book Ordinary Differential Equations and Integral Equations written by C.T.H. Baker and published by Gulf Professional Publishing. This book was released on 2001-07-04 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: /homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! This volume contains contributions in the area of differential equations and integral equations. Many numerical methods have arisen in response to the need to solve "real-life" problems in applied mathematics, in particular problems that do not have a closed-form solution. Contributions on both initial-value problems and boundary-value problems in ordinary differential equations appear in this volume. Numerical methods for initial-value problems in ordinary differential equations fall naturally into two classes: those which use one starting value at each step (one-step methods) and those which are based on several values of the solution (multistep methods). John Butcher has supplied an expert's perspective of the development of numerical methods for ordinary differential equations in the 20th century. Rob Corless and Lawrence Shampine talk about established technology, namely software for initial-value problems using Runge-Kutta and Rosenbrock methods, with interpolants to fill in the solution between mesh-points, but the 'slant' is new - based on the question, "How should such software integrate into the current generation of Problem Solving Environments?" Natalia Borovykh and Marc Spijker study the problem of establishing upper bounds for the norm of the nth power of square matrices. The dynamical system viewpoint has been of great benefit to ODE theory and numerical methods. Related is the study of chaotic behaviour. Willy Govaerts discusses the numerical methods for the computation and continuation of equilibria and bifurcation points of equilibria of dynamical systems. Arieh Iserles and Antonella Zanna survey the construction of Runge-Kutta methods which preserve algebraic invariant functions. Valeria Antohe and Ian Gladwell present numerical experiments on solving a Hamiltonian system of Hénon and Heiles with a symplectic and a nonsymplectic method with a variety of precisions and initial conditions. Stiff differential equations first became recognized as special during the 1950s. In 1963 two seminal publications laid to the foundations for later development: Dahlquist's paper on A-stable multistep methods and Butcher's first paper on implicit Runge-Kutta methods. Ernst Hairer and Gerhard Wanner deliver a survey which retraces the discovery of the order stars as well as the principal achievements obtained by that theory. Guido Vanden Berghe, Hans De Meyer, Marnix Van Daele and Tanja Van Hecke construct exponentially fitted Runge-Kutta methods with s stages. Differential-algebraic equations arise in control, in modelling of mechanical systems and in many other fields. Jeff Cash describes a fairly recent class of formulae for the numerical solution of initial-value problems for stiff and differential-algebraic systems. Shengtai Li and Linda Petzold describe methods and software for sensitivity analysis of solutions of DAE initial-value problems. Again in the area of differential-algebraic systems, Neil Biehn, John Betts, Stephen Campbell and William Huffman present current work on mesh adaptation for DAE two-point boundary-value problems. Contrasting approaches to the question of how good an approximation is as a solution of a given equation involve (i) attempting to estimate the actual error (i.e., the difference between the true and the approximate solutions) and (ii) attempting to estimate the defect - the amount by which the approximation fails to satisfy the given equation and any side-conditions. The paper by Wayne Enright on defect control relates to carefully analyzed techniques that have been proposed both for ordinary differential equations and for delay differential equations in which an attempt is made to control an estimate of the size of the defect. Many phenomena incorporate noise, and the numerical solution of stochastic differential equations has developed as a relatively new item of study in the area. Keven Burrage, Pamela Burrage and Taketomo Mitsui review the way numerical methods for solving stochastic differential equations (SDE's) are constructed. One of the more recent areas to attract scrutiny has been the area of differential equations with after-effect (retarded, delay, or neutral delay differential equations) and in this volume we include a number of papers on evolutionary problems in this area. The paper of Genna Bocharov and Fathalla Rihan conveys the importance in mathematical biology of models using retarded differential equations. The contribution by Christopher Baker is intended to convey much of the background necessary for the application of numerical methods and includes some original results on stability and on the solution of approximating equations. Alfredo Bellen, Nicola Guglielmi and Marino Zennaro contribute to the analysis of stability of numerical solutions of nonlinear neutral differential equations. Koen Engelborghs, Tatyana Luzyanina, Dirk Roose, Neville Ford and Volker Wulf consider the numerics of bifurcation in delay differential equations. Evelyn Buckwar contributes a paper indicating the construction and analysis of a numerical strategy for stochastic delay differential equations (SDDEs). This volume contains contributions on both Volterra and Fredholm-type integral equations. Christopher Baker responded to a late challenge to craft a review of the theory of the basic numerics of Volterra integral and integro-differential equations. Simon Shaw and John Whiteman discuss Galerkin methods for a type of Volterra integral equation that arises in modelling viscoelasticity. A subclass of boundary-value problems for ordinary differential equation comprises eigenvalue problems such as Sturm-Liouville problems (SLP) and Schrödinger equations. Liviu Ixaru describes the advances made over the last three decades in the field of piecewise perturbation methods for the numerical solution of Sturm-Liouville problems in general and systems of Schrödinger equations in particular. Alan Andrew surveys the asymptotic correction method for regular Sturm-Liouville problems. Leon Greenberg and Marco Marletta survey methods for higher-order Sturm-Liouville problems. R. Moore in the 1960s first showed the feasibility of validated solutions of differential equations, that is, of computing guaranteed enclosures of solutions. Boundary integral equations. Numerical solution of integral equations associated with boundary-value problems has experienced continuing interest. Peter Junghanns and Bernd Silbermann present a selection of modern results concerning the numerical analysis of one-dimensional Cauchy singular integral equations, in particular the stability of operator sequences associated with different projection methods. Johannes Elschner and Ivan Graham summarize the most important results achieved in the last years about the numerical solution of one-dimensional integral equations of Mellin type of means of projection methods and, in particular, by collocation methods. A survey of results on quadrature methods for solving boundary integral equations is presented by Andreas Rathsfeld. Wolfgang Hackbusch and Boris Khoromski present a novel approach for a very efficient treatment of integral operators. Ernst Stephan examines multilevel methods for the h-, p- and hp- versions of the boundary element method, including pre-conditioning techniques. George Hsiao, Olaf Steinbach and Wolfgang Wendland analyze various boundary element methods employed in local discretization schemes.
Book Synopsis Volterra Equations and Applications by : C. Corduneanu
Download or read book Volterra Equations and Applications written by C. Corduneanu and published by CRC Press. This book was released on 2000-01-10 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume comprises selected papers presented at the Volterra Centennial Symposium and is dedicated to Volterra and the contribution of his work to the study of systems - an important concept in modern engineering. Vito Volterra began his study of integral equations at the end of the nineteenth century and this was a significant development in the theory of integral equations and nonlinear functional analysis. Volterra series are of interest and use in pure and applied mathematics and engineering.
Book Synopsis Delay Differential Equations and Applications to Biology by : Fathalla A. Rihan
Download or read book Delay Differential Equations and Applications to Biology written by Fathalla A. Rihan and published by Springer Nature. This book was released on 2021-08-19 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the numerical treatment of delay differential equations and their applications in bioscience. A wide range of delay differential equations are discussed with integer and fractional-order derivatives to demonstrate their richer mathematical framework compared to differential equations without memory for the analysis of dynamical systems. The book also provides interesting applications of delay differential equations in infectious diseases, including COVID-19. It will be valuable to mathematicians and specialists associated with mathematical biology, mathematical modelling, life sciences, immunology and infectious diseases.
Book Synopsis Integral and Integrodifferential Equations by : Ravi P. Agarwal
Download or read book Integral and Integrodifferential Equations written by Ravi P. Agarwal and published by CRC Press. This book was released on 2000-03-09 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of 24 papers, which encompasses the construction and the qualitative as well as quantitative properties of solutions of Volterra, Fredholm, delay, impulse integral and integro-differential equations in various spaces on bounded as well as unbounded intervals, will conduce and spur further research in this direction.
Book Synopsis Numerical Analysis: Historical Developments in the 20th Century by : C. Brezinski
Download or read book Numerical Analysis: Historical Developments in the 20th Century written by C. Brezinski and published by Elsevier. This book was released on 2012-12-02 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical analysis has witnessed many significant developments in the 20th century. This book brings together 16 papers dealing with historical developments, survey papers and papers on recent trends in selected areas of numerical analysis, such as: approximation and interpolation, solution of linear systems and eigenvalue problems, iterative methods, quadrature rules, solution of ordinary-, partial- and integral equations. The papers are reprinted from the 7-volume project of the Journal of Computational and Applied Mathematics on '/homepage/sac/cam/na2000/index.htmlNumerical Analysis 2000'. An introductory survey paper deals with the history of the first courses on numerical analysis in several countries and with the landmarks in the development of important algorithms and concepts in the field.
Book Synopsis Analytical and Numerical Methods for Volterra Equations by : Peter Linz
Download or read book Analytical and Numerical Methods for Volterra Equations written by Peter Linz and published by SIAM. This book was released on 1985-01-01 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents an aspect of activity in integral equations methods for the solution of Volterra equations for those who need to solve real-world problems. Since there are few known analytical methods leading to closed-form solutions, the emphasis is on numerical techniques. The major points of the analytical methods used to study the properties of the solution are presented in the first part of the book. These techniques are important for gaining insight into the qualitative behavior of the solutions and for designing effective numerical methods. The second part of the book is devoted entirely to numerical methods. The author has chosen the simplest possible setting for the discussion, the space of real functions of real variables. The text is supplemented by examples and exercises.
Download or read book HERMIS '94 written by and published by . This book was released on 1994 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan by : Josef Dick
Download or read book Contemporary Computational Mathematics - A Celebration of the 80th Birthday of Ian Sloan written by Josef Dick and published by Springer. This book was released on 2018-05-23 with total page 1330 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a tribute to Professor Ian Hugh Sloan on the occasion of his 80th birthday. It consists of nearly 60 articles written by international leaders in a diverse range of areas in contemporary computational mathematics. These papers highlight the impact and many achievements of Professor Sloan in his distinguished academic career. The book also presents state of the art knowledge in many computational fields such as quasi-Monte Carlo and Monte Carlo methods for multivariate integration, multi-level methods, finite element methods, uncertainty quantification, spherical designs and integration on the sphere, approximation and interpolation of multivariate functions, oscillatory integrals, and in general in information-based complexity and tractability, as well as in a range of other topics. The book also tells the life story of the renowned mathematician, family man, colleague and friend, who has been an inspiration to many of us. The reader may especially enjoy the story from the perspective of his family, his wife, his daughter and son, as well as grandchildren, who share their views of Ian. The clear message of the book is that Ian H. Sloan has been a role model in science and life.
Book Synopsis Acta Numerica 2004: Volume 13 by : Arieh Iserles
Download or read book Acta Numerica 2004: Volume 13 written by Arieh Iserles and published by Cambridge University Press. This book was released on 2004-06-03 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: An annual volume presenting substantive survey articles in numerical mathematics and scientific computing.
Book Synopsis Theory of Integro-Differential Equations by : V. Lakshmikantham
Download or read book Theory of Integro-Differential Equations written by V. Lakshmikantham and published by CRC Press. This book was released on 1995-03-15 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique monograph investigates the theory and applications of Volterra integro-differential equations. Whilst covering the basic theory behind these equations it also studies their qualitative properties and discusses a large number of applications. This comprehensive work presents a unified framework to investigate the fundamental existence of theory, treats stability theory in terms of Lyapunov functions and functionals, develops the theory of integro-differential equations with impulse effects, and deals with linear evolution equations in abstract spaces. Various applications of integro-differential equations, such as population dynamics, nuclear reactors, viscoelasticity, wave propagation and engineering systems, are discussed, making this book indispensable for mathematicians and engineers alike.
Book Synopsis Spline Functions and the Theory of Wavelets by : Serge Dubuc
Download or read book Spline Functions and the Theory of Wavelets written by Serge Dubuc and published by American Mathematical Soc.. This book was released on 1999-01-01 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is based on a series of thematic workshops on the theory of wavelets and the theory of splines. Important applications are included. The volume is divided into four parts: Spline Functions, Theory of Wavelets, Wavelets in Physics, and Splines and Wavelets in Statistics. Part one presents the broad spectrum of current research in the theory and applications of spline functions. Theory ranges from classical univariate spline approximation to an abstract framework for multivariate spline interpolation. Applications include scattered-data interpolation, differential equations and various techniques in CAGD. Part two considers two developments in subdivision schemes; one for uniform regularity and the other for irregular situations. The latter includes construction of multidimensional wavelet bases and determination of bases with a given time frequency localization. In part three, the multifractal formalism is extended to fractal functions involving oscillating singularites. There is a review of a method of quantization of classical systems based on the theory of coherent states. Wavelets are applied in the domains of atomic, molecular and condensed-matter physics. In part four, ways in which wavelets can be used to solve important function estimation problems in statistics are shown. Different wavelet estimators are proposed in the following distinct cases: functions with discontinuities, errors that are no longer Gaussian, wavelet estimation with robustness, and error distribution that is no longer stationary. Some of the contributions in this volume are current research results not previously available in monograph form. The volume features many applications and interesting new theoretical developments. Readers will find powerful methods for studying irregularities in mathematics, physics, and statistics.
Book Synopsis Volterra Integral and Functional Equations by : G. Gripenberg
Download or read book Volterra Integral and Functional Equations written by G. Gripenberg and published by Cambridge University Press. This book was released on 1990 with total page 727 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book looks at the theories of Volterra integral and functional equations.
Book Synopsis Abstract Volterra Integro-Differential Equations by : Marko Kostic
Download or read book Abstract Volterra Integro-Differential Equations written by Marko Kostic and published by CRC Press. This book was released on 2015-05-06 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of linear Volterra integro-differential equations has been developing rapidly in the last three decades. This book provides an easy to read concise introduction to the theory of ill-posed abstract Volterra integro-differential equations. A major part of the research is devoted to the study of various types of abstract (multi-term) fracti
Book Synopsis Advances in Stability Theory at the End of the 20th Century by : A.A. Martynyuk
Download or read book Advances in Stability Theory at the End of the 20th Century written by A.A. Martynyuk and published by CRC Press. This book was released on 2002-10-03 with total page 366 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents surveys and research papers on various aspects of modern stability theory, including discussions on modern applications of the theory, all contributed by experts in the field. The volume consists of four sections that explore the following directions in the development of stability theory: progress in stability theory by first
Book Synopsis Equations with Unbounded Delay by : C. Corduneanu
Download or read book Equations with Unbounded Delay written by C. Corduneanu and published by . This book was released on 1979 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis The Numerical Treatment of Integral Equations by : Christopher T. H. Baker
Download or read book The Numerical Treatment of Integral Equations written by Christopher T. H. Baker and published by Oxford University Press, USA. This book was released on 1977 with total page 1056 pages. Available in PDF, EPUB and Kindle. Book excerpt: