Numerical Simulation of a Film Cooled Turbine Blade Leading Edge Including Heat Transfer Effects

Download Numerical Simulation of a Film Cooled Turbine Blade Leading Edge Including Heat Transfer Effects PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 436 pages
Book Rating : 4.:/5 (641 download)

DOWNLOAD NOW!


Book Synopsis Numerical Simulation of a Film Cooled Turbine Blade Leading Edge Including Heat Transfer Effects by : Laurene D. Dobrowolski

Download or read book Numerical Simulation of a Film Cooled Turbine Blade Leading Edge Including Heat Transfer Effects written by Laurene D. Dobrowolski and published by . This book was released on 2009 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computations and experiments were run to study heat transfer and overall effectiveness for a simulated turbine blade leading edge. Computational predictions were run for a film cooled leading edge model using a conjugate numerical method to predict the normalized "metal" temperatures for the model. This computational study was done in conjunction with a parallel effort to experimentally determine normalized metal temperatures, i.e. overall effectiveness, using a specially designed high conductivity model. Predictions of overall effectiveness were higher than experimentally measured values in the stagnation region, but lower along the downstream section of the leading edge. Reasons for the differences between computational predictions and experimental measurements were examined. Also of interest was the validity of Taw as the driving temperature for heat transfer into the blade, and this was examined via computations. Overall, this assumption gave reasonable results except near the stagnation line. Experiments were also conducted on a leading edge with no film cooling to gain a better understanding of the additional cooling provided by film cooling. Heat flux was also measured and external and internal heat transfer coefficients were determined. The results showed roughly constant overall effectiveness on the external surface.

Three-dimensional Numerical Simulation of Film Cooling on a Turbine Blade Leading-edge Model

Download Three-dimensional Numerical Simulation of Film Cooling on a Turbine Blade Leading-edge Model PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 98 pages
Book Rating : 4.:/5 (319 download)

DOWNLOAD NOW!


Book Synopsis Three-dimensional Numerical Simulation of Film Cooling on a Turbine Blade Leading-edge Model by : Douglas Stenger

Download or read book Three-dimensional Numerical Simulation of Film Cooling on a Turbine Blade Leading-edge Model written by Douglas Stenger and published by . This book was released on 2009 with total page 98 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present study is a three-dimensional numerical investigation of the effectiveness of film cooling for a turbine blade leading-edge model with both a single and a three-hole cooling configuration. The model used has the same dimensions as those in the experimental investigation of Ou and Rivir (2006). It consists of a half cylinder with a flat after-body, and well represents the leading edge of a turbine blade. The single coolant hole is situated approximately at the spanwise center of the cylindrical model, and makes an angle of 21.5 degrees to the leading edge and 20 degrees to the spanwise direction. For the three-hole configuration, the center hole is positioned the same as the single hole in the single-hole configuration, with the adjacent holes located at a spanwise distance of 37.4 mm on either side of the center hole. Multi-block grids were generated using GridGen, and the flows were simulated using the flow solver Fluent. A highly clustered structured C-grid was developed around the leading edge of the model. The outer unstructured-grid domain represents the wind tunnel as used in the experimental study of Ou and Rivir (2006), and the leading-edge model is located at the center of the domain. Simulations were carried out for blowing ratios, M, ranging from 0.75 to 2.0. Turbulence was represented using the k-? shear-stress transport (SST) model, and the flow was assumed to have a free-stream turbulence intensity of 0.75%. Two types of boundary conditions were used to represent the blade wall: an adiabatic surface, and a conductive surface. The adiabatic-wall results over-predicted the film-cooling effectiveness in the far downstream region for low blowing ratios. Also, in the vicinity of the cooling hole, an increase in blowing ratio resulted in higher film cooling effectiveness than observed in the experiments. It should be noted that the steady RANS-based turbulence model used under-predicts the interaction between the coolant and mainstream flow near the cooling-pipe exit. The conductive-wall results show a much closer agreement with experimental data for film effectiveness as compared to the adiabatic-wall predictions. Simulations were also performed with higher values of turbulence intensity at the cooling-hole inlet, and these predicted the coolant-mainstream interaction and the film-cooling effectiveness more accurately. Finally, a novel concept of pulsing the coolant flow was implemented so as to achieve film-cooling effectiveness equivalent to that with constant cooling, but with reduced overall coolant air, thereby enhancing turbine efficiency. Pulsed cooling with pulsing frequency PF = 5 and 10Hz, and duty cycle DC = 50%, shows the greatest cooling effects. The three-hole cooling results indicate that the 49 mm spanwise distance used for computing the spanwise-averaged values for film-cooling effectiveness accounts for all of the film-coolant spreading provided by the single hole. Also, the neighboring cooling holes contribute little film cooling to the 49 mm spanwise distance. The most significant new finding in this work is that the inclusion of wall conductance is the main factor responsible for reproducing the experimental data.

Impingement Jet Cooling in Gas Turbines

Download Impingement Jet Cooling in Gas Turbines PDF Online Free

Author :
Publisher : WIT Press
ISBN 13 : 1845649060
Total Pages : 253 pages
Book Rating : 4.8/5 (456 download)

DOWNLOAD NOW!


Book Synopsis Impingement Jet Cooling in Gas Turbines by : R.S. Amano

Download or read book Impingement Jet Cooling in Gas Turbines written by R.S. Amano and published by WIT Press. This book was released on 2014-05-28 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the requirement for enhanced cooling technologies on modern gas turbine engines, advanced research and development has had to take place in field of thermal engineering. Among the gas turbine cooling technologies, impingement jet cooling is one of the most effective in terms of cooling effectiveness, manufacturability and cost. The chapters contained in this book describe research on state-of-the-art and advanced cooling technologies that have been developed, or that are being researched, with a variety of approaches from theoretical, experimental, and CFD studies. The authors of the chapters have been selected from some of the most active researchers and scientists on the subject. This is the first to book published on the topics of gas turbines and heat transfer to focus on impingement cooling alone.

Leading Edge Film Cooling Effects on Turbine Blade Heat Transfer

Download Leading Edge Film Cooling Effects on Turbine Blade Heat Transfer PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 26 pages
Book Rating : 4.:/5 (317 download)

DOWNLOAD NOW!


Book Synopsis Leading Edge Film Cooling Effects on Turbine Blade Heat Transfer by : Vijay K. Garg

Download or read book Leading Edge Film Cooling Effects on Turbine Blade Heat Transfer written by Vijay K. Garg and published by . This book was released on 1995 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented at the International Gas Turbine and Aeroengine Congress and Exposition, Houston, Texas - June 5-8, 1995.

A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models

Download A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 14 pages
Book Rating : 4.:/5 (317 download)

DOWNLOAD NOW!


Book Synopsis A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models by : Ali A. Ameri

Download or read book A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models written by Ali A. Ameri and published by . This book was released on 1999 with total page 14 pages. Available in PDF, EPUB and Kindle. Book excerpt:

A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models

Download A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models PDF Online Free

Author :
Publisher : Createspace Independent Publishing Platform
ISBN 13 : 9781721189052
Total Pages : 26 pages
Book Rating : 4.1/5 (89 download)

DOWNLOAD NOW!


Book Synopsis A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models by : National Aeronautics and Space Administration (NASA)

Download or read book A Numerical Analysis of Heat Transfer and Effectiveness on Film Cooled Turbine Blade Tip Models written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-15 with total page 26 pages. Available in PDF, EPUB and Kindle. Book excerpt: A computational study has been performed to predict the distribution of convective heat transfer coefficient on a simulated blade tip with cooling holes. The purpose of the examination was to assess the ability of a three-dimensional Reynolds-averaged Navier-Stokes solver to predict the rate of tip heat transfer and the distribution of cooling effectiveness. To this end, the simulation of tip clearance flow with blowing of Kim and Metzger was used. The agreement of the computed effectiveness with the data was quite good. The agreement with the heat transfer coefficient was not as good but improved away from the cooling holes. Numerical flow visualization showed that the uniformity of wetting of the surface by the film cooling jet is helped by the reverse flow due to edge separation of the main flow. Ameri, A. A. and Rigby, D. L. Glenn Research Center NASA/CR-1999-209165, NAS 1.26:209165, E-11756

Numerical Simulation of Turbine Blade Heat Transfer Using Two-equation Turbulence Models

Download Numerical Simulation of Turbine Blade Heat Transfer Using Two-equation Turbulence Models PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 216 pages
Book Rating : 4.:/5 (975 download)

DOWNLOAD NOW!


Book Synopsis Numerical Simulation of Turbine Blade Heat Transfer Using Two-equation Turbulence Models by : Abdul Hafid M. Elfaghi

Download or read book Numerical Simulation of Turbine Blade Heat Transfer Using Two-equation Turbulence Models written by Abdul Hafid M. Elfaghi and published by . This book was released on 2000 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: The development of high performance gas turbines requires high turbine inlet temperatures that can lead to severe thermal stresses in the turbine blades, particularly in the first stages of the turbine. Therefore, the major objective of gas- turbine designers is to determine the thermal and aero-dynamical characteristics of the turbulent flow in the turbine cascade. This work is a numerical simulation of fluid flow and heat transfer in the turbine blade using different two-equation turbulence models. The turbulence models used here were based on the eddy viscosity concept, which determined the turbulent viscosity through time-averaged Navier-Stokes differential equations. The most widely accepted turbulence models are the two-equation models, which involves the solution of two transport equations for the turbulent kinetic energy, k, and its rate of dissipation, & or In the present simulation, four two-equation turbulence models were used, the standard k-& model, the modified Chen-Kim k-& model, RNG model and Wilcox standard k - OJ turbulence model. A comparison between the turbulence models and their predictions of the heat flux on the blade were carried out. The results were also compared with the available experimental results obtained from a research carried out by Arts et at. (1990) at the von Karman Institute of Fluid Dynamics (VKI). The simulation was performed using the general-purpose computational fluid dynamics code, PHOENICS, which solved the governing fluid flow and heat transfer equations. An H-type, body-fitted-co-ordinate (BFC) grid was used and upstream and downstream periodic conditions were specified. The grid system used was, sufficiently fine and the results were grid independent. All models demonstrated good heat transfer predictions for the pressure side except close to the leading edge. On the suction side, standard model over-predicted the heat transfer, whereas Chen-Kim, RNG and k - OJ models captured the overall behaviour quite well. Unlike k - OJ model, all k - & models generated very high turbulence levels in the stagnation point regions, which gave rise to the heat transfer rates close to the leading edge.

Computational Simulation and Analysis of Film Cooling for the Leading-edge Model of a Turbine Blade

Download Computational Simulation and Analysis of Film Cooling for the Leading-edge Model of a Turbine Blade PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 147 pages
Book Rating : 4.:/5 (154 download)

DOWNLOAD NOW!


Book Synopsis Computational Simulation and Analysis of Film Cooling for the Leading-edge Model of a Turbine Blade by :

Download or read book Computational Simulation and Analysis of Film Cooling for the Leading-edge Model of a Turbine Blade written by and published by . This book was released on 2007 with total page 147 pages. Available in PDF, EPUB and Kindle. Book excerpt: The application of interest is the cooling of turbine blades in large gas combustion engines where hot gases from the combustor cause thermal deterioration of the metal turbine blades. A thin-film of coolant flow buffers the hottest parts of the blade surface. Heat transfer on a bluff body and, subsequently, a single-hole cooling problem is solved numerically in two-dimensions. The flow is assumed to be incompressible, and the laminar, steady Navier-Stokes equations are used to obtain the flow solution. Results for the bluff-body heat transfer agree very well with experimental data up to the separation point, and are within 20% of the data thereafter. The film-cooling simulation yielded higher cooling effectiveness due in large part to the use of the two-dimensional model, which treats the hole as a slot with higher coolant mass. Results from the simulations indicate that the Cobalt flow solver is capable of solving complex heat transfer problems.

Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas-turbine Blades

Download Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas-turbine Blades PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 44 pages
Book Rating : 4.3/5 (126 download)

DOWNLOAD NOW!


Book Synopsis Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas-turbine Blades by : Ernst Rudolf Georg Eckert

Download or read book Survey of Advantages and Problems Associated with Transpiration Cooling and Film Cooling of Gas-turbine Blades written by Ernst Rudolf Georg Eckert and published by . This book was released on 1951 with total page 44 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary: Transpiration and film cooling promise to be effective methods of cooling gas-turbine blades; consequently, analytical and experimental investigations are being conducted to obtain a better understanding of these processes. This report serves as an introduction to these cooling methods, explains the physical processes, and surveys the information available for predicting blade temperatures and heat-transfer rates. In addition, the difficulties encountered in obtaining a uniform blade temperature are discussed, and the possibilities of correcting these difficulties are indicated. Air is the only coolant considered in the application of these cooling methods.

A Numerical Study of the Effect of Wake Passing on Turbine Blade Film Cooling

Download A Numerical Study of the Effect of Wake Passing on Turbine Blade Film Cooling PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 18 pages
Book Rating : 4.:/5 (317 download)

DOWNLOAD NOW!


Book Synopsis A Numerical Study of the Effect of Wake Passing on Turbine Blade Film Cooling by : James D. Heidmann

Download or read book A Numerical Study of the Effect of Wake Passing on Turbine Blade Film Cooling written by James D. Heidmann and published by . This book was released on 1995 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Heat Transfer in Gas Turbines

Download Heat Transfer in Gas Turbines PDF Online Free

Author :
Publisher : Witpress
ISBN 13 :
Total Pages : 544 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Heat Transfer in Gas Turbines by : Bengt Sundén

Download or read book Heat Transfer in Gas Turbines written by Bengt Sundén and published by Witpress. This book was released on 2001 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title presents and reflects current active research on various heat transfer topics and related phenomena in gas turbine systems. It begins with a general introduction to gas turbine heat transfer, before moving on to specific areas.

Modelling and Simulation of Turbulent Heat Transfer

Download Modelling and Simulation of Turbulent Heat Transfer PDF Online Free

Author :
Publisher : WIT Press
ISBN 13 : 1853129569
Total Pages : 361 pages
Book Rating : 4.8/5 (531 download)

DOWNLOAD NOW!


Book Synopsis Modelling and Simulation of Turbulent Heat Transfer by : B. Sundén

Download or read book Modelling and Simulation of Turbulent Heat Transfer written by B. Sundén and published by WIT Press. This book was released on 2005-02-21 with total page 361 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing invaluable information for both graduate researchers and R & D engineers in industry and consultancy, this book focuses on the modelling and simulation of fluid flow and thermal transport phenomena in turbulent convective flows. Its overall objective is to present state-of-the-art knowledge in order to predict turbulent heat transfer processes in fundamental and idealized flows as well as in engineering applications. The chapters, which are invited contributions from some of the most prominent scientists in this field, cover a wide range of topics and follow a unified outline and presentation to aid accessibility.

Influence of Blade Leading Edge Geometry and Upstream Blowing on the Heat/mass Transfer in a Turbine Cascade

Download Influence of Blade Leading Edge Geometry and Upstream Blowing on the Heat/mass Transfer in a Turbine Cascade PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 534 pages
Book Rating : 4.:/5 (319 download)

DOWNLOAD NOW!


Book Synopsis Influence of Blade Leading Edge Geometry and Upstream Blowing on the Heat/mass Transfer in a Turbine Cascade by : Marco Papa

Download or read book Influence of Blade Leading Edge Geometry and Upstream Blowing on the Heat/mass Transfer in a Turbine Cascade written by Marco Papa and published by . This book was released on 2006 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Numerical Simulations of Leading Edge Film Cooling Flows for Gas Tubine Airfoils

Download Numerical Simulations of Leading Edge Film Cooling Flows for Gas Tubine Airfoils PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 442 pages
Book Rating : 4.:/5 (89 download)

DOWNLOAD NOW!


Book Synopsis Numerical Simulations of Leading Edge Film Cooling Flows for Gas Tubine Airfoils by : Cheryl A. Martin

Download or read book Numerical Simulations of Leading Edge Film Cooling Flows for Gas Tubine Airfoils written by Cheryl A. Martin and published by . This book was released on 1997 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Gas Turbine Heat Transfer and Cooling Technology, Second Edition

Download Gas Turbine Heat Transfer and Cooling Technology, Second Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439855684
Total Pages : 892 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Gas Turbine Heat Transfer and Cooling Technology, Second Edition by : Je-Chin Han

Download or read book Gas Turbine Heat Transfer and Cooling Technology, Second Edition written by Je-Chin Han and published by CRC Press. This book was released on 2012-11-27 with total page 892 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive reference for engineers and researchers, Gas Turbine Heat Transfer and Cooling Technology, Second Edition has been completely revised and updated to reflect advances in the field made during the past ten years. The second edition retains the format that made the first edition so popular and adds new information mainly based on selected published papers in the open literature. See What’s New in the Second Edition: State-of-the-art cooling technologies such as advanced turbine blade film cooling and internal cooling Modern experimental methods for gas turbine heat transfer and cooling research Advanced computational models for gas turbine heat transfer and cooling performance predictions Suggestions for future research in this critical technology The book discusses the need for turbine cooling, gas turbine heat-transfer problems, and cooling methodology and covers turbine rotor and stator heat-transfer issues, including endwall and blade tip regions under engine conditions, as well as under simulated engine conditions. It then examines turbine rotor and stator blade film cooling and discusses the unsteady high free-stream turbulence effect on simulated cascade airfoils. From here, the book explores impingement cooling, rib-turbulent cooling, pin-fin cooling, and compound and new cooling techniques. It also highlights the effect of rotation on rotor coolant passage heat transfer. Coverage of experimental methods includes heat-transfer and mass-transfer techniques, liquid crystal thermography, optical techniques, as well as flow and thermal measurement techniques. The book concludes with discussions of governing equations and turbulence models and their applications for predicting turbine blade heat transfer and film cooling, and turbine blade internal cooling.

Gas Turbine Blade Cooling

Download Gas Turbine Blade Cooling PDF Online Free

Author :
Publisher : SAE International
ISBN 13 : 0768095026
Total Pages : 238 pages
Book Rating : 4.7/5 (68 download)

DOWNLOAD NOW!


Book Synopsis Gas Turbine Blade Cooling by : Chaitanya D Ghodke

Download or read book Gas Turbine Blade Cooling written by Chaitanya D Ghodke and published by SAE International. This book was released on 2018-12-10 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Gas turbines play an extremely important role in fulfilling a variety of power needs and are mainly used for power generation and propulsion applications. The performance and efficiency of gas turbine engines are to a large extent dependent on turbine rotor inlet temperatures: typically, the hotter the better. In gas turbines, the combustion temperature and the fuel efficiency are limited by the heat transfer properties of the turbine blades. However, in pushing the limits of hot gas temperatures while preventing the melting of blade components in high-pressure turbines, the use of effective cooling technologies is critical. Increasing the turbine inlet temperature also increases heat transferred to the turbine blade, and it is possible that the operating temperature could reach far above permissible metal temperature. In such cases, insufficient cooling of turbine blades results in excessive thermal stress on the blades causing premature blade failure. This may bring hazards to the engine's safe operation. Gas Turbine Blade Cooling, edited by Dr. Chaitanya D. Ghodke, offers 10 handpicked SAE International's technical papers, which identify key aspects of turbine blade cooling and help readers understand how this process can improve the performance of turbine hardware.

Unsteady High Turbulence Effects on Turbine Blade Film Cooling Heat Transfer Performance Using a Transient Liquid Crystal Technique

Download Unsteady High Turbulence Effects on Turbine Blade Film Cooling Heat Transfer Performance Using a Transient Liquid Crystal Technique PDF Online Free

Author :
Publisher : Createspace Independent Publishing Platform
ISBN 13 : 9781721933846
Total Pages : 228 pages
Book Rating : 4.9/5 (338 download)

DOWNLOAD NOW!


Book Synopsis Unsteady High Turbulence Effects on Turbine Blade Film Cooling Heat Transfer Performance Using a Transient Liquid Crystal Technique by : National Aeronautics and Space Administration (NASA)

Download or read book Unsteady High Turbulence Effects on Turbine Blade Film Cooling Heat Transfer Performance Using a Transient Liquid Crystal Technique written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-27 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Unsteady wake effect, with and without trailing edge ejection, on detailed heat transfer coefficient and film cooling effectiveness distributions is presented for a downstream film-cooled gas turbine blade. Tests were performed on a five-blade linear cascade at an exit Reynolds number of 5.3 x 10(exp 5). Upstream unsteady wakes were simulated using a spoke-wheel type wake generator. Coolant blowing ratio was varied from 0.4 to 1.2; air and CO2 were used as coolants to simulate different density ratios. Surface heat transfer and film effectiveness distributions were obtained using a transient liquid crystal technique; coolant temperature profiles were determined with a cold wire technique. Results show that Nusselt numbers for a film cooled blade are much higher compared to a blade without film injection. Unsteady wake slightly enhances Nusselt numbers but significantly reduces film effectiveness versus no wake cases. Nusselt numbers increase only slic,htly but film cooling, effectiveness increases significantly with increasing, blowing ratio. Higher density coolant (CO2) provides higher effectiveness at higher blowing ratios (M = 1.2) whereas lower density coolant (Air) provides higher 0 effectiveness at lower blowing ratios (M = 0.8). Trailing edge ejection generally has more effect on film effectiveness than on the heat transfer, typically reducing film effectiveness and enhancing heat transfer. Similar data is also presented for a film cooled cylindrical leading edge model. Han, J. C. and Ekkad, S. V. and Du, H. and Teng, S. Glenn Research Center NAG3-1656; RTOP 714-01-4A