Numerical Simulation of a Direct Injection Spark Ignition Engine Using Ethanol as Fuel

Download Numerical Simulation of a Direct Injection Spark Ignition Engine Using Ethanol as Fuel PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 276 pages
Book Rating : 4.3/5 (129 download)

DOWNLOAD NOW!


Book Synopsis Numerical Simulation of a Direct Injection Spark Ignition Engine Using Ethanol as Fuel by : Shalabh Srivastava

Download or read book Numerical Simulation of a Direct Injection Spark Ignition Engine Using Ethanol as Fuel written by Shalabh Srivastava and published by . This book was released on 2008 with total page 276 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Automotive Spark-Ignited Direct-Injection Gasoline Engines

Download Automotive Spark-Ignited Direct-Injection Gasoline Engines PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 008055279X
Total Pages : 129 pages
Book Rating : 4.0/5 (85 download)

DOWNLOAD NOW!


Book Synopsis Automotive Spark-Ignited Direct-Injection Gasoline Engines by : F. Zhao

Download or read book Automotive Spark-Ignited Direct-Injection Gasoline Engines written by F. Zhao and published by Elsevier. This book was released on 2000-02-08 with total page 129 pages. Available in PDF, EPUB and Kindle. Book excerpt: The process of fuel injection, spray atomization and vaporization, charge cooling, mixture preparation and the control of in-cylinder air motion are all being actively researched and this work is reviewed in detail and analyzed. The new technologies such as high-pressure, common-rail, gasoline injection systems and swirl-atomizing gasoline fuel injections are discussed in detail, as these technologies, along with computer control capabilities, have enabled the current new examination of an old objective; the direct-injection, stratified-charge (DISC), gasoline engine. The prior work on DISC engines that is relevant to current GDI engine development is also reviewed and discussed. The fuel economy and emission data for actual engine configurations have been obtained and assembled for all of the available GDI literature, and are reviewed and discussed in detail. The types of GDI engines are arranged in four classifications of decreasing complexity, and the advantages and disadvantages of each class are noted and explained. Emphasis is placed upon consensus trends and conclusions that are evident when taken as a whole; thus the GDI researcher is informed regarding the degree to which engine volumetric efficiency and compression ratio can be increased under optimized conditions, and as to the extent to which unburned hydrocarbon (UBHC), NOx and particulate emissions can be minimized for specific combustion strategies. The critical area of GDI fuel injector deposits and the associated effect on spray geometry and engine performance degradation are reviewed, and important system guidelines for minimizing deposition rates and deposit effects are presented. The capabilities and limitations of emission control techniques and after treatment hardware are reviewed in depth, and a compilation and discussion of areas of consensus on attaining European, Japanese and North American emission standards presented. All known research, prototype and production GDI engines worldwide are reviewed as to performance, emissions and fuel economy advantages, and for areas requiring further development. The engine schematics, control diagrams and specifications are compiled, and the emission control strategies are illustrated and discussed. The influence of lean-NOx catalysts on the development of late-injection, stratified-charge GDI engines is reviewed, and the relative merits of lean-burn, homogeneous, direct-injection engines as an option requiring less control complexity are analyzed.

Numerical Simulations of a Spark Ignition Engine Using Alternative Fuels

Download Numerical Simulations of a Spark Ignition Engine Using Alternative Fuels PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 208 pages
Book Rating : 4.:/5 (55 download)

DOWNLOAD NOW!


Book Synopsis Numerical Simulations of a Spark Ignition Engine Using Alternative Fuels by : Kaushal Majmudar

Download or read book Numerical Simulations of a Spark Ignition Engine Using Alternative Fuels written by Kaushal Majmudar and published by . This book was released on 2003 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Numerical Simulation - Advanced Techniques for Science and Engineering

Download Numerical Simulation - Advanced Techniques for Science and Engineering PDF Online Free

Author :
Publisher : BoD – Books on Demand
ISBN 13 : 1803569530
Total Pages : 342 pages
Book Rating : 4.8/5 (35 download)

DOWNLOAD NOW!


Book Synopsis Numerical Simulation - Advanced Techniques for Science and Engineering by : Ali Soofastaei

Download or read book Numerical Simulation - Advanced Techniques for Science and Engineering written by Ali Soofastaei and published by BoD – Books on Demand. This book was released on 2023-11-15 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical simulation is a powerful tool used in various fields of science and engineering to model complex systems and predict their behavior. It involves developing mathematical models that describe the behavior of a system and using computer algorithms to solve these models numerically. By doing so, researchers and engineers can study the behavior of a system in detail, which may only be possible with analytical methods. Numerical simulation has many advantages over traditional analytical methods. It allows researchers and engineers to study complex systems’ behavior in detail and predict their behavior in different scenarios. It also allows for the optimization of systems and the identification of design flaws before they are built. However, numerical simulation has its limitations. It requires significant computational resources, and the accuracy of the results depends on the quality of the mathematical models and the discretization methods used. Nevertheless, numerical simulation remains a valuable tool in many fields and its importance is likely to grow as computational resources become more powerful and widely available. Numerical simulation is widely used in physics, engineering, computer science, and mathematics. In physics, for example, numerical simulation is used to study the behavior of complex systems such as weather patterns, fluid dynamics, and particle interactions. In engineering, it is used to design and optimize systems such as aircraft, cars, and buildings. In computer science, numerical simulation models and optimization algorithms and data structures. In mathematics, it is used to study complex mathematical models and to solve complex equations. This book familiarizes readers with the practical application of the numerical simulation technique to solve complex analytical problems in different industries and sciences.

Numerical Simulation of Combustion and Unburnt Products in Dual-fuel Compression-ignition Engines with Multiple Injection

Download Numerical Simulation of Combustion and Unburnt Products in Dual-fuel Compression-ignition Engines with Multiple Injection PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 124 pages
Book Rating : 4.:/5 (958 download)

DOWNLOAD NOW!


Book Synopsis Numerical Simulation of Combustion and Unburnt Products in Dual-fuel Compression-ignition Engines with Multiple Injection by : Arash Jamali

Download or read book Numerical Simulation of Combustion and Unburnt Products in Dual-fuel Compression-ignition Engines with Multiple Injection written by Arash Jamali and published by . This book was released on 2015 with total page 124 pages. Available in PDF, EPUB and Kindle. Book excerpt: Natural gas substitution for diesel can result in significant reduction in pollutant emissions. Based on current fuel price projections, operating costs would be lower. With a high ignition temperature and relatively low reactivity, natural gas can enable promising approaches to combustion engine design. In particular, the combination of low reactivity natural gas and high reactivity diesel may allow for optimal operation as a reactivity-controlled compression ignition (RCCI) engine, which has potential for high efficiency and low emissions. In this computational study, a lean mixture of natural gas is ignited by direct injection of diesel fuel in a model of the heavy-duty CAT3401 diesel engine. Dual-fuel combustion of natural gas-diesel (NGD) may provide a wider range of reactivity control than other dual-fuel combustion strategies such as gasoline-diesel dual fuel. Accurate and efficient combustion modeling can aid NGD dual-fuel engine control and optimization. In this study, multi-dimensional simulation was performed using a nite-volume computational code for fuel spray, combustion and emission processes. Adaptive mesh refinement (AMR) and multi-zone reaction modeling enables simulation in a reasonable time. The latter approach avoids expensive kinetic calculations in every computational cell, with considerable speedup. Two approaches to combustion modeling are used within the Reynolds averaged Navier-Stokes (RANS) framework. The first approach uses direct integration of the detailed chemistry and no turbulence-chemistry interaction modeling. The model produces encouraging agreement between the simulation and experimental data. For reasonable accuracy and computation cost, a minimum cell size of 0.2 millimeters is suggested for NGD dual-fuel engine combustion. In addition, the role of different chemical reaction mechanism on the NGD dual-fuel combustion is considered with this model. This work considers fundamental questions regarding combustion in NGD dual-fuel combustion, particularly about how and where fuels react, and the difference between combustion in the dual fuel mode and conventional diesel mode. The results show that in part-load working condition main part of CH4 cannot burn and it has significant effect in high level of HC emission in NGD dual-fuel engine. The CFD results reveal that homogeneous mixture of CH4 and air is too lean, and it cannot ignite in regions that any species from C7H16 chemical mechanism does not exist. It is shown that multi-injection of diesel fuel with an early main injection can reduce HC emission significantly in the NGD dual-fuel engine. In addition, the results reveal that increasing the air fuel ratio by decreasing the air amount could be a promising idea for HC emission reduction in NGD dual-fuel engine, too.

Modeling and Simulation of Knock and Nitric Oxide Emissions in Turbocharged Direct Injection Spark Ignition Engines

Download Modeling and Simulation of Knock and Nitric Oxide Emissions in Turbocharged Direct Injection Spark Ignition Engines PDF Online Free

Author :
Publisher :
ISBN 13 : 9783954045532
Total Pages : 189 pages
Book Rating : 4.0/5 (455 download)

DOWNLOAD NOW!


Book Synopsis Modeling and Simulation of Knock and Nitric Oxide Emissions in Turbocharged Direct Injection Spark Ignition Engines by : Dirk Linse

Download or read book Modeling and Simulation of Knock and Nitric Oxide Emissions in Turbocharged Direct Injection Spark Ignition Engines written by Dirk Linse and published by . This book was released on 2013-11-13 with total page 189 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Numerical Modeling of Gasoline Direct Injection Spark Ignition Engines During Cold-start

Download Numerical Modeling of Gasoline Direct Injection Spark Ignition Engines During Cold-start PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (129 download)

DOWNLOAD NOW!


Book Synopsis Numerical Modeling of Gasoline Direct Injection Spark Ignition Engines During Cold-start by : Arun Cherumuttathu Ravindran

Download or read book Numerical Modeling of Gasoline Direct Injection Spark Ignition Engines During Cold-start written by Arun Cherumuttathu Ravindran and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Developing a profound understanding of the combustion characteristics of the cold-start phase of a Direct Injection Spark Ignition (DISI) engine is critical to meeting the increasingly stringent emissions regulations. Computational Fluid Dynamics (CFD) modeling of gasoline DISI combustion under normal operating conditions has been discussed in detail using both the detailed chemistry approach and flamelet models (e.g., the G-Equation). However, there has been little discussion regarding the capability of the existing models to capture DISI combustion under cold-start conditions. Accurate predictions of cold-start behavior involves the efficient use of multiple models - spray modeling to capture the split injection strategies, models to capture the wall-film interactions, ignition modeling to capture the effects of retarded spark timings, combustion modeling to accurately capture the flame front propagation, and turbulence modeling to capture the effects of decaying turbulent kinetic energy. The retarded spark timing helps to generate high heat flux in the exhaust for a rapid catalyst light-off of the after-treatment system during cold-start. However, the adverse effect is a reduced turbulent flame speed due to decaying turbulent kinetic energy. Accordingly, developing an understanding of the turbulence-chemistry interactions is imperative for accurate modeling of combustion under cold-start conditions.This study introduces a modified version of the G-Equation combustion model called the GLR model (G-Equation for Lower Reynolds number regimes) that exhibits improved performance under cold-start conditions. The model attempts to estimate the turbulent flame speed based on the local conditions of fuel concentration and turbulence intensity. The local conditions and the associated turbulent-chemistry interactions are studied by tracking the flame front on the Borghi-Peters regime diagram. To accurately model the DISI combustion process, it is important to account for the effects of the spark energy discharge process. In this work, an ignition model is presented that is compatible with the G-Equation combustion model, and which accounts for the effects of plasma expansion and local mixture properties such as turbulence and the equivalence ratio on the early flame kernel growth. The model is referred to as the Plasma Velocity on G-Surface (PVG) model, and it uses the G-surface to capture the kernel growth. The model derives its theory from the DPIK model and applies its concepts onto an Eulerian framework, thereby removing the need for Lagrangian particles to track the kernel growth. Finally, a methodology of using machine learning (ML) techniques in combination with 3D CFD modeling to optimize the cold-start fast-idle phase of a DISI engine is presented. The optimization process implies the identification of the range of operating parameters, that will ensure the following criteria under cold-start conditions: (1) a fixed IMEP of 2 bar (BMEP of 0 bar), (2) a stoichiometric exhaust equivalence ratio (based on carbon-to-oxygen atoms) to ensure the efficient operation of the after-treatment system, (3) enough exhaust heat flux to ensure a rapid light-off of the after-treatment system, and (4) acceptable NOx and HC emissions. Gaussian Process Regression (GPR)-based ML models are employed to make predictions about DISI cold-start behavior with acceptable accuracy and a substantially reduced computational time.

Numerical Analysis of Mixture Formation and Combustion in a Hydrogen Direct-Injection Internal Combustion Engine

Download Numerical Analysis of Mixture Formation and Combustion in a Hydrogen Direct-Injection Internal Combustion Engine PDF Online Free

Author :
Publisher : Cuvillier Verlag
ISBN 13 : 3736924992
Total Pages : 232 pages
Book Rating : 4.7/5 (369 download)

DOWNLOAD NOW!


Book Synopsis Numerical Analysis of Mixture Formation and Combustion in a Hydrogen Direct-Injection Internal Combustion Engine by : Udo Gerke

Download or read book Numerical Analysis of Mixture Formation and Combustion in a Hydrogen Direct-Injection Internal Combustion Engine written by Udo Gerke and published by Cuvillier Verlag. This book was released on 2008-02-05 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present work investigates the mixture formation and combustion process of a direct-injection (DI) hydrogen internal combustion engine by means of three-dimensional numerical simulation. The study specifies details on the validity of turbulence models, combustion models as well as aspects on the definition of hydrogen-air burning velocities with respect to hydrogen IC engine applications. Results of homogeneous, stratified and multi-injection engine operation covering premixed, partially premixed and non-premixed combustion of hydrogen are presented. Results of the numerical simulations are validated using data of experimental analysis from parallel works, employing a one-cylinder research engine and a research engine with optical access. As a fundamental contribution to combustion modelling of hydrogen IC engines, a new correlation for laminar burning velocities of hydrogen-air mixtures at engine-relevant conditions is derived from measurements of premixed outwards propagating flames conducted in a single-cylinder compression machine. Numerical results of the direct-injection mixture formation give a detailed understanding of the interrelation between injection timing and the degree of mixture homogenisation. A favourable agreement between the computed fuel concentration and results of Planar Laser Induced Fluorescence (PLIF) measurements is reported for various injection timings. Different two-equation turbulence models, a Shear Stress Transport (SST) model and a k-ε model based on Renormalisation Group (RNG) theory as well as a Reynolds Stress Model (RSM) are discussed. The impact of the models on the level of turbulent kinetic energy proves to be of major importance. State-of-the-art turbulent combustion models on the basis of turbulent flame speed closure (TFC) and on the basis of a flame surface density approach, the Extended Coherent Flame Model (ECFM), are examined. The models are adapted to hydrogen internal combustion engines and are interfaced to the established three-dimensional flow field solver ANSYS CFX within the framework of the international research project HyICE. Two different approaches are investigated as input for the laminar burning velocities of hydrogen. Firstly, flame speed data are computed with a kinetic mechanism. Secondly, an existing experimentally derived laminar flame speed correlation is extended to rich air/fuel equivalence ratios (λ 1) and is compared to measurements conducted within the present work. In general, the TFC-models show a satisfying agreement for DI operating points compared to experimental data, when mixing computations are conducted with the SST turbulence model. Also, port fuel injection (PFI) operating points demonstrate a good performance with these models, however, the constant model prefactor (multiplier for the closure of turbulent flame speed) has to be defined individually for PFI and DI computations. This effect might be caused by the dissimilar sources of turbulence for the two engine types (PFI and DI) which cannot be adequately predicted by the turbulence models. Combustion computations on the basis of mixture results obtained by the RNG-model generally underrate the level of turbulence intensity for stratified operation points, effecting too weak rates of heat release. The ECFM combustion model shows a satisfying predictability for the PFI case using a constant model prefactor. Computations of DI operating points with this model, however, require a readjustment of the prefactor for each operating point in order to match experimental results. Regarding turbulent combustion, the hydrogen laminar flame speed is recognised to be the crucial quantity for the employed modelling approaches. Since direct-injection hydrogen engines in the stratified case engender a wide range of equivalence ratios, fundamental data for the laminar flame speed has to be provided as a model input within the entire boundaries of ignition limits. A lack of experimental data of laminar flame speed at engine-relevant conditions (high pressure, high temperature) is noticed. In order to perform a detailed study on hydrogen burning velocities, a single-cylinder compression machine is selected to conduct flame speed measurements of hydrogen-air mixtures at ignition temperatures and pressures up to T = 700 K and p = 45 bar, considering air/fuel equivalence ratios between λ = 0.4 and 2.8. Flame front velocities are acquired by means of optical methods using OH-chemiluminescence and thermodynamic, multi-zone evaluation of pressure traces. In comparison to data of laminar flame speed derived from reaction mechanisms and flame speed correlations found in literature, the experimental results show increased burning velocities due to flame front wrinkling caused by hydrodynamic and thermo-diffusive instabilities. a href="http://ec.europa.eu/research/transport/news/article_5199_en.html" EU Transport Research

Remote Sensing of the Atmosphere for Environmental Security

Download Remote Sensing of the Atmosphere for Environmental Security PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1402050909
Total Pages : 347 pages
Book Rating : 4.4/5 (2 download)

DOWNLOAD NOW!


Book Synopsis Remote Sensing of the Atmosphere for Environmental Security by : Agnès Perrin

Download or read book Remote Sensing of the Atmosphere for Environmental Security written by Agnès Perrin and published by Springer Science & Business Media. This book was released on 2007-01-21 with total page 347 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume continues presentation of the proceedings of a NATO Advanced Research Workshop (ARW) held at Rabat, Morocco on the 17-19th of November 2005 entitled Remote Sensing of the Atmosphere for Environmental Security. Coverage includes a review of recent and upcoming experimental satellite measurements of the Earth’s atmosphere, characterisation of pollution in urban areas and the growing lack of water in many countries of the Mediterranean area, and more.

Advanced Direct Injection Combustion Engine Technologies and Development

Download Advanced Direct Injection Combustion Engine Technologies and Development PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 1845697324
Total Pages : 325 pages
Book Rating : 4.8/5 (456 download)

DOWNLOAD NOW!


Book Synopsis Advanced Direct Injection Combustion Engine Technologies and Development by : H Zhao

Download or read book Advanced Direct Injection Combustion Engine Technologies and Development written by H Zhao and published by Elsevier. This book was released on 2014-01-23 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: Direct injection enables precise control of the fuel/air mixture so that engines can be tuned for improved power and fuel economy, but ongoing research challenges remain in improving the technology for commercial applications. As fuel prices escalate DI engines are expected to gain in popularity for automotive applications. This important book, in two volumes, reviews the science and technology of different types of DI combustion engines and their fuels. Volume 1 deals with direct injection gasoline and CNG engines, including history and essential principles, approaches to improved fuel economy, design, optimisation, optical techniques and their applications. Reviews key technologies for enhancing direct injection (DI) gasoline engines Examines approaches to improved fuel economy and lower emissions Discusses DI compressed natural gas (CNG) engines and biofuels

Assessment of Fuel Economy Technologies for Light-Duty Vehicles

Download Assessment of Fuel Economy Technologies for Light-Duty Vehicles PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309216389
Total Pages : 373 pages
Book Rating : 4.3/5 (92 download)

DOWNLOAD NOW!


Book Synopsis Assessment of Fuel Economy Technologies for Light-Duty Vehicles by : National Research Council

Download or read book Assessment of Fuel Economy Technologies for Light-Duty Vehicles written by National Research Council and published by National Academies Press. This book was released on 2011-06-03 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: Various combinations of commercially available technologies could greatly reduce fuel consumption in passenger cars, sport-utility vehicles, minivans, and other light-duty vehicles without compromising vehicle performance or safety. Assessment of Technologies for Improving Light Duty Vehicle Fuel Economy estimates the potential fuel savings and costs to consumers of available technology combinations for three types of engines: spark-ignition gasoline, compression-ignition diesel, and hybrid. According to its estimates, adopting the full combination of improved technologies in medium and large cars and pickup trucks with spark-ignition engines could reduce fuel consumption by 29 percent at an additional cost of $2,200 to the consumer. Replacing spark-ignition engines with diesel engines and components would yield fuel savings of about 37 percent at an added cost of approximately $5,900 per vehicle, and replacing spark-ignition engines with hybrid engines and components would reduce fuel consumption by 43 percent at an increase of $6,000 per vehicle. The book focuses on fuel consumption-the amount of fuel consumed in a given driving distance-because energy savings are directly related to the amount of fuel used. In contrast, fuel economy measures how far a vehicle will travel with a gallon of fuel. Because fuel consumption data indicate money saved on fuel purchases and reductions in carbon dioxide emissions, the book finds that vehicle stickers should provide consumers with fuel consumption data in addition to fuel economy information.

Modeling and Simulation of Turbulent Combustion

Download Modeling and Simulation of Turbulent Combustion PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811074100
Total Pages : 663 pages
Book Rating : 4.8/5 (11 download)

DOWNLOAD NOW!


Book Synopsis Modeling and Simulation of Turbulent Combustion by : Santanu De

Download or read book Modeling and Simulation of Turbulent Combustion written by Santanu De and published by Springer. This book was released on 2017-12-12 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.

Modelling Spark Ignition Combustion

Download Modelling Spark Ignition Combustion PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9819706297
Total Pages : 678 pages
Book Rating : 4.8/5 (197 download)

DOWNLOAD NOW!


Book Synopsis Modelling Spark Ignition Combustion by : P. A. Lakshminarayanan

Download or read book Modelling Spark Ignition Combustion written by P. A. Lakshminarayanan and published by Springer Nature. This book was released on with total page 678 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Numerical Modelling of Fuel Injection and Stratified Turbulent Combustion in a Direct-injection Spark-ignition Engine Using an Open Source Code

Download Numerical Modelling of Fuel Injection and Stratified Turbulent Combustion in a Direct-injection Spark-ignition Engine Using an Open Source Code PDF Online Free

Author :
Publisher :
ISBN 13 : 9789175970943
Total Pages : 279 pages
Book Rating : 4.9/5 (79 download)

DOWNLOAD NOW!


Book Synopsis Numerical Modelling of Fuel Injection and Stratified Turbulent Combustion in a Direct-injection Spark-ignition Engine Using an Open Source Code by :

Download or read book Numerical Modelling of Fuel Injection and Stratified Turbulent Combustion in a Direct-injection Spark-ignition Engine Using an Open Source Code written by and published by . This book was released on 2014 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles

Download Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309373913
Total Pages : 812 pages
Book Rating : 4.3/5 (93 download)

DOWNLOAD NOW!


Book Synopsis Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles by : National Research Council

Download or read book Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles written by National Research Council and published by National Academies Press. This book was released on 2015-09-28 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: The light-duty vehicle fleet is expected to undergo substantial technological changes over the next several decades. New powertrain designs, alternative fuels, advanced materials and significant changes to the vehicle body are being driven by increasingly stringent fuel economy and greenhouse gas emission standards. By the end of the next decade, cars and light-duty trucks will be more fuel efficient, weigh less, emit less air pollutants, have more safety features, and will be more expensive to purchase relative to current vehicles. Though the gasoline-powered spark ignition engine will continue to be the dominant powertrain configuration even through 2030, such vehicles will be equipped with advanced technologies, materials, electronics and controls, and aerodynamics. And by 2030, the deployment of alternative methods to propel and fuel vehicles and alternative modes of transportation, including autonomous vehicles, will be well underway. What are these new technologies - how will they work, and will some technologies be more effective than others? Written to inform The United States Department of Transportation's National Highway Traffic Safety Administration (NHTSA) and Environmental Protection Agency (EPA) Corporate Average Fuel Economy (CAFE) and greenhouse gas (GHG) emission standards, this new report from the National Research Council is a technical evaluation of costs, benefits, and implementation issues of fuel reduction technologies for next-generation light-duty vehicles. Cost, Effectiveness, and Deployment of Fuel Economy Technologies for Light-Duty Vehicles estimates the cost, potential efficiency improvements, and barriers to commercial deployment of technologies that might be employed from 2020 to 2030. This report describes these promising technologies and makes recommendations for their inclusion on the list of technologies applicable for the 2017-2025 CAFE standards.

Proceedings of the 2nd Annual International Conference on Material, Machines and Methods for Sustainable Development (MMMS2020)

Download Proceedings of the 2nd Annual International Conference on Material, Machines and Methods for Sustainable Development (MMMS2020) PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030696103
Total Pages : 1088 pages
Book Rating : 4.0/5 (36 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of the 2nd Annual International Conference on Material, Machines and Methods for Sustainable Development (MMMS2020) by : Banh Tien Long

Download or read book Proceedings of the 2nd Annual International Conference on Material, Machines and Methods for Sustainable Development (MMMS2020) written by Banh Tien Long and published by Springer Nature. This book was released on 2021-03-26 with total page 1088 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents selected, peer-reviewed proceedings of the 2nd International Conference on Material, Machines and Methods for Sustainable Development (MMMS2020), held in the city of Nha Trang, Vietnam, from 12 to 15 November, 2020. The purpose of the conference is to explore and ensure an understanding of the critical aspects contributing to sustainable development, especially materials, machines and methods. The contributions published in this book come from authors representing universities, research institutes and industrial companies, and reflect the results of a very broad spectrum of research, from micro- and nanoscale materials design and processing, to mechanical engineering technology in industry. Many of the contributions selected for these proceedings focus on materials modeling, eco-material processes and mechanical manufacturing.

Proceedings of the FISITA 2012 World Automotive Congress

Download Proceedings of the FISITA 2012 World Automotive Congress PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642337503
Total Pages : 558 pages
Book Rating : 4.6/5 (423 download)

DOWNLOAD NOW!


Book Synopsis Proceedings of the FISITA 2012 World Automotive Congress by : SAE-China

Download or read book Proceedings of the FISITA 2012 World Automotive Congress written by SAE-China and published by Springer Science & Business Media. This book was released on 2012-11-02 with total page 558 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of the FISITA 2012 World Automotive Congress are selected from nearly 2,000 papers submitted to the 34th FISITA World Automotive Congress, which is held by Society of Automotive Engineers of China (SAE-China ) and the International Federation of Automotive Engineering Societies (FISITA). This proceedings focus on solutions for sustainable mobility in all areas of passenger car, truck and bus transportation. Volume 2: Advanced Internal Combustion Engines (II) focuses on: •Flow and Combustion Diagnosis •Engine Design and Simulation •Heat Transfer and Waste Heat Reutilization •Emission Standard and International Regulations Above all researchers, professional engineers and graduates in fields of automotive engineering, mechanical engineering and electronic engineering will benefit from this book. SAE-China is a national academic organization composed of enterprises and professionals who focus on research, design and education in the fields of automotive and related industries. FISITA is the umbrella organization for the national automotive societies in 37 countries around the world. It was founded in Paris in 1948 with the purpose of bringing engineers from around the world together in a spirit of cooperation to share ideas and advance the technological development of the automobile.