Numerical Methods for Unconstrained Optimization and Nonlinear Equations

Download Numerical Methods for Unconstrained Optimization and Nonlinear Equations PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9781611971200
Total Pages : 394 pages
Book Rating : 4.9/5 (712 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Unconstrained Optimization and Nonlinear Equations by : J. E. Dennis, Jr.

Download or read book Numerical Methods for Unconstrained Optimization and Nonlinear Equations written by J. E. Dennis, Jr. and published by SIAM. This book was released on 1996-12-01 with total page 394 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has become the standard for a complete, state-of-the-art description of the methods for unconstrained optimization and systems of nonlinear equations. Originally published in 1983, it provides information needed to understand both the theory and the practice of these methods and provides pseudocode for the problems. The algorithms covered are all based on Newton's method or "quasi-Newton" methods, and the heart of the book is the material on computational methods for multidimensional unconstrained optimization and nonlinear equation problems. The republication of this book by SIAM is driven by a continuing demand for specific and sound advice on how to solve real problems. The level of presentation is consistent throughout, with a good mix of examples and theory, making it a valuable text at both the graduate and undergraduate level. It has been praised as excellent for courses with approximately the same name as the book title and would also be useful as a supplemental text for a nonlinear programming or a numerical analysis course. Many exercises are provided to illustrate and develop the ideas in the text. A large appendix provides a mechanism for class projects and a reference for readers who want the details of the algorithms. Practitioners may use this book for self-study and reference. For complete understanding, readers should have a background in calculus and linear algebra. The book does contain background material in multivariable calculus and numerical linear algebra.

Programming for Computations - MATLAB/Octave

Download Programming for Computations - MATLAB/Octave PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319324527
Total Pages : 228 pages
Book Rating : 4.3/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Programming for Computations - MATLAB/Octave by : Svein Linge

Download or read book Programming for Computations - MATLAB/Octave written by Svein Linge and published by Springer. This book was released on 2016-08-01 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.

Numerical Methods for Nonlinear Algebraic Equations

Download Numerical Methods for Nonlinear Algebraic Equations PDF Online Free

Author :
Publisher : Gordon & Breach Publishing Group
ISBN 13 :
Total Pages : 216 pages
Book Rating : 4.:/5 (319 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Nonlinear Algebraic Equations by : British Computer Society. Numerical Analysis Specialist Group

Download or read book Numerical Methods for Nonlinear Algebraic Equations written by British Computer Society. Numerical Analysis Specialist Group and published by Gordon & Breach Publishing Group. This book was released on 1970 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Newton Methods for Nonlinear Problems

Download Newton Methods for Nonlinear Problems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540210993
Total Pages : 444 pages
Book Rating : 4.2/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Newton Methods for Nonlinear Problems by : Peter Deuflhard

Download or read book Newton Methods for Nonlinear Problems written by Peter Deuflhard and published by Springer Science & Business Media. This book was released on 2005-01-13 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the efficient numerical solution of challenging nonlinear problems in science and engineering, both in finite and in infinite dimension. Its focus is on local and global Newton methods for direct problems or Gauss-Newton methods for inverse problems. Lots of numerical illustrations, comparison tables, and exercises make the text useful in computational mathematics classes. At the same time, the book opens many directions for possible future research.

Iterative Methods for Linear and Nonlinear Equations

Download Iterative Methods for Linear and Nonlinear Equations PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9781611970944
Total Pages : 179 pages
Book Rating : 4.9/5 (79 download)

DOWNLOAD NOW!


Book Synopsis Iterative Methods for Linear and Nonlinear Equations by : C. T. Kelley

Download or read book Iterative Methods for Linear and Nonlinear Equations written by C. T. Kelley and published by SIAM. This book was released on 1995-01-01 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear and nonlinear systems of equations are the basis for many, if not most, of the models of phenomena in science and engineering, and their efficient numerical solution is critical to progress in these areas. This is the first book to be published on nonlinear equations since the mid-1980s. Although it stresses recent developments in this area, such as Newton-Krylov methods, considerable material on linear equations has been incorporated. This book focuses on a small number of methods and treats them in depth. The author provides a complete analysis of the conjugate gradient and generalized minimum residual iterations as well as recent advances including Newton-Krylov methods, incorporation of inexactness and noise into the analysis, new proofs and implementations of Broyden's method, and globalization of inexact Newton methods. Examples, methods, and algorithmic choices are based on applications to infinite dimensional problems such as partial differential equations and integral equations. The analysis and proof techniques are constructed with the infinite dimensional setting in mind and the computational examples and exercises are based on the MATLAB environment.

Iterative Methods for Solving Nonlinear Equations and Systems

Download Iterative Methods for Solving Nonlinear Equations and Systems PDF Online Free

Author :
Publisher : MDPI
ISBN 13 : 3039219405
Total Pages : 494 pages
Book Rating : 4.0/5 (392 download)

DOWNLOAD NOW!


Book Synopsis Iterative Methods for Solving Nonlinear Equations and Systems by : Juan R. Torregrosa

Download or read book Iterative Methods for Solving Nonlinear Equations and Systems written by Juan R. Torregrosa and published by MDPI. This book was released on 2019-12-06 with total page 494 pages. Available in PDF, EPUB and Kindle. Book excerpt: Solving nonlinear equations in Banach spaces (real or complex nonlinear equations, nonlinear systems, and nonlinear matrix equations, among others), is a non-trivial task that involves many areas of science and technology. Usually the solution is not directly affordable and require an approach using iterative algorithms. This Special Issue focuses mainly on the design, analysis of convergence, and stability of new schemes for solving nonlinear problems and their application to practical problems. Included papers study the following topics: Methods for finding simple or multiple roots either with or without derivatives, iterative methods for approximating different generalized inverses, real or complex dynamics associated to the rational functions resulting from the application of an iterative method on a polynomial. Additionally, the analysis of the convergence has been carried out by means of different sufficient conditions assuring the local, semilocal, or global convergence. This Special issue has allowed us to present the latest research results in the area of iterative processes for solving nonlinear equations as well as systems and matrix equations. In addition to the theoretical papers, several manuscripts on signal processing, nonlinear integral equations, or partial differential equations, reveal the connection between iterative methods and other branches of science and engineering.

Methods for Solving Systems of Nonlinear Equations

Download Methods for Solving Systems of Nonlinear Equations PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9781611970012
Total Pages : 157 pages
Book Rating : 4.9/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Methods for Solving Systems of Nonlinear Equations by : Werner C. Rheinboldt

Download or read book Methods for Solving Systems of Nonlinear Equations written by Werner C. Rheinboldt and published by SIAM. This book was released on 1998-01-01 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition provides much-needed updates to the original volume. Like the first edition, it emphasizes the ideas behind the algorithms as well as their theoretical foundations and properties, rather than focusing strictly on computational details; at the same time, this new version is now largely self-contained and includes essential proofs. Additions have been made to almost every chapter, including an introduction to the theory of inexact Newton methods, a basic theory of continuation methods in the setting of differentiable manifolds, and an expanded discussion of minimization methods. New information on parametrized equations and continuation incorporates research since the first edition.

Differential-algebraic Equations

Download Differential-algebraic Equations PDF Online Free

Author :
Publisher : European Mathematical Society
ISBN 13 : 9783037190173
Total Pages : 396 pages
Book Rating : 4.1/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Differential-algebraic Equations by : Peter Kunkel

Download or read book Differential-algebraic Equations written by Peter Kunkel and published by European Mathematical Society. This book was released on 2006 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Differential-algebraic equations are a widely accepted tool for the modeling and simulation of constrained dynamical systems in numerous applications, such as mechanical multibody systems, electrical circuit simulation, chemical engineering, control theory, fluid dynamics and many others. This is the first comprehensive textbook that provides a systematic and detailed analysis of initial and boundary value problems for differential-algebraic equations. The analysis is developed from the theory of linear constant coefficient systems via linear variable coefficient systems to general nonlinear systems. Further sections on control problems, generalized inverses of differential-algebraic operators, generalized solutions, and differential equations on manifolds complement the theoretical treatment of initial value problems. Two major classes of numerical methods for differential-algebraic equations (Runge-Kutta and BDF methods) are discussed and analyzed with respect to convergence and order. A chapter is devoted to index reduction methods that allow the numerical treatment of general differential-algebraic equations. The analysis and numerical solution of boundary value problems for differential-algebraic equations is presented, including multiple shooting and collocation methods. A survey of current software packages for differential-algebraic equations completes the text. The book is addressed to graduate students and researchers in mathematics, engineering and sciences, as well as practitioners in industry. A prerequisite is a standard course on the numerical solution of ordinary differential equations. Numerous examples and exercises make the book suitable as a course textbook or for self-study.

Programming for Computations - Python

Download Programming for Computations - Python PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319324284
Total Pages : 244 pages
Book Rating : 4.3/5 (193 download)

DOWNLOAD NOW!


Book Synopsis Programming for Computations - Python by : Svein Linge

Download or read book Programming for Computations - Python written by Svein Linge and published by Springer. This book was released on 2016-07-25 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents computer programming as a key method for solving mathematical problems. There are two versions of the book, one for MATLAB and one for Python. The book was inspired by the Springer book TCSE 6: A Primer on Scientific Programming with Python (by Langtangen), but the style is more accessible and concise, in keeping with the needs of engineering students. The book outlines the shortest possible path from no previous experience with programming to a set of skills that allows the students to write simple programs for solving common mathematical problems with numerical methods in engineering and science courses. The emphasis is on generic algorithms, clean design of programs, use of functions, and automatic tests for verification.

The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods

Download The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540468323
Total Pages : 146 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods by : Ernst Hairer

Download or read book The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods written by Ernst Hairer and published by Springer. This book was released on 2006-11-14 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: The term differential-algebraic equation was coined to comprise differential equations with constraints (differential equations on manifolds) and singular implicit differential equations. Such problems arise in a variety of applications, e.g. constrained mechanical systems, fluid dynamics, chemical reaction kinetics, simulation of electrical networks, and control engineering. From a more theoretical viewpoint, the study of differential-algebraic problems gives insight into the behaviour of numerical methods for stiff ordinary differential equations. These lecture notes provide a self-contained and comprehensive treatment of the numerical solution of differential-algebraic systems using Runge-Kutta methods, and also extrapolation methods. Readers are expected to have a background in the numerical treatment of ordinary differential equations. The subject is treated in its various aspects ranging from the theory through the analysis to implementation and applications.

Numerical Solution of Initial-value Problems in Differential-algebraic Equations

Download Numerical Solution of Initial-value Problems in Differential-algebraic Equations PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 9781611971224
Total Pages : 268 pages
Book Rating : 4.9/5 (712 download)

DOWNLOAD NOW!


Book Synopsis Numerical Solution of Initial-value Problems in Differential-algebraic Equations by : K. E. Brenan

Download or read book Numerical Solution of Initial-value Problems in Differential-algebraic Equations written by K. E. Brenan and published by SIAM. This book was released on 1996-01-01 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many physical problems are most naturally described by systems of differential and algebraic equations. This book describes some of the places where differential-algebraic equations (DAE's) occur. The basic mathematical theory for these equations is developed and numerical methods are presented and analyzed. Examples drawn from a variety of applications are used to motivate and illustrate the concepts and techniques. This classic edition, originally published in 1989, is the only general DAE book available. It not only develops guidelines for choosing different numerical methods, it is the first book to discuss DAE codes, including the popular DASSL code. An extensive discussion of backward differentiation formulas details why they have emerged as the most popular and best understood class of linear multistep methods for general DAE's. New to this edition is a chapter that brings the discussion of DAE software up to date. The objective of this monograph is to advance and consolidate the existing research results for the numerical solution of DAE's. The authors present results on the analysis of numerical methods, and also show how these results are relevant for the solution of problems from applications. They develop guidelines for problem formulation and effective use of the available mathematical software and provide extensive references for further study.

Numerical Continuation Methods

Download Numerical Continuation Methods PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642612571
Total Pages : 402 pages
Book Rating : 4.6/5 (426 download)

DOWNLOAD NOW!


Book Synopsis Numerical Continuation Methods by : Eugene L. Allgower

Download or read book Numerical Continuation Methods written by Eugene L. Allgower and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past fifteen years two new techniques have yielded extremely important contributions toward the numerical solution of nonlinear systems of equations. This book provides an introduction to and an up-to-date survey of numerical continuation methods (tracing of implicitly defined curves) of both predictor-corrector and piecewise-linear types. It presents and analyzes implementations aimed at applications to the computation of zero points, fixed points, nonlinear eigenvalue problems, bifurcation and turning points, and economic equilibria. Many algorithms are presented in a pseudo code format. An appendix supplies five sample FORTRAN programs with numerical examples, which readers can adapt to fit their purposes, and a description of the program package SCOUT for analyzing nonlinear problems via piecewise-linear methods. An extensive up-to-date bibliography spanning 46 pages is included. The material in this book has been presented to students of mathematics, engineering and sciences with great success, and will also serve as a valuable tool for researchers in the field.

Computational Methods in Nonlinear Structural and Solid Mechanics

Download Computational Methods in Nonlinear Structural and Solid Mechanics PDF Online Free

Author :
Publisher : Elsevier
ISBN 13 : 1483145646
Total Pages : 472 pages
Book Rating : 4.4/5 (831 download)

DOWNLOAD NOW!


Book Synopsis Computational Methods in Nonlinear Structural and Solid Mechanics by : Ahmed K. Noor

Download or read book Computational Methods in Nonlinear Structural and Solid Mechanics written by Ahmed K. Noor and published by Elsevier. This book was released on 2014-05-20 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Methods in Nonlinear Structural and Solid Mechanics covers the proceedings of the Symposium on Computational Methods in Nonlinear Structural and Solid Mechanics. The book covers the development of efficient discretization approaches; advanced numerical methods; improved programming techniques; and applications of these developments to nonlinear analysis of structures and solids. The chapters of the text are organized into 10 parts according to the issue they tackle. The first part deals with nonlinear mathematical theories and formulation aspects, while the second part covers computational strategies for nonlinear programs. Part 3 deals with time integration and numerical solution of nonlinear algebraic equations, while Part 4 discusses material characterization and nonlinear fracture mechanics, and Part 5 tackles nonlinear interaction problems. The sixth part discusses seismic response and nonlinear analysis of concrete structure, and the seventh part tackles nonlinear problems for nuclear reactors. Part 8 covers crash dynamics and impact problems, while Part 9 deals with nonlinear problems of fibrous composites and advanced nonlinear applications. The last part discusses computerized symbolic manipulation and nonlinear analysis software systems. The book will be of great interest to numerical analysts, computer scientists, structural engineers, and other professionals concerned with nonlinear structural and solid mechanics.

Finite Difference Computing with PDEs

Download Finite Difference Computing with PDEs PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319554565
Total Pages : 522 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Finite Difference Computing with PDEs by : Hans Petter Langtangen

Download or read book Finite Difference Computing with PDEs written by Hans Petter Langtangen and published by Springer. This book was released on 2017-06-21 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is open access under a CC BY 4.0 license. This easy-to-read book introduces the basics of solving partial differential equations by means of finite difference methods. Unlike many of the traditional academic works on the topic, this book was written for practitioners. Accordingly, it especially addresses: the construction of finite difference schemes, formulation and implementation of algorithms, verification of implementations, analyses of physical behavior as implied by the numerical solutions, and how to apply the methods and software to solve problems in the fields of physics and biology.

Numerical Methods and Optimization

Download Numerical Methods and Optimization PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030893669
Total Pages : 730 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods and Optimization by : Jean-Pierre Corriou

Download or read book Numerical Methods and Optimization written by Jean-Pierre Corriou and published by Springer Nature. This book was released on 2022-01-04 with total page 730 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text, covering a very large span of numerical methods and optimization, is primarily aimed at advanced undergraduate and graduate students. A background in calculus and linear algebra are the only mathematical requirements. The abundance of advanced methods and practical applications will be attractive to scientists and researchers working in different branches of engineering. The reader is progressively introduced to general numerical methods and optimization algorithms in each chapter. Examples accompany the various methods and guide the students to a better understanding of the applications. The user is often provided with the opportunity to verify their results with complex programming code. Each chapter ends with graduated exercises which furnish the student with new cases to study as well as ideas for exam/homework problems for the instructor. A set of programs made in MatlabTM is available on the author’s personal website and presents both numerical and optimization methods.

Numerical Solution of Algebraic Riccati Equations

Download Numerical Solution of Algebraic Riccati Equations PDF Online Free

Author :
Publisher : SIAM
ISBN 13 : 1611972086
Total Pages : 261 pages
Book Rating : 4.6/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Numerical Solution of Algebraic Riccati Equations by : Dario A. Bini

Download or read book Numerical Solution of Algebraic Riccati Equations written by Dario A. Bini and published by SIAM. This book was released on 2012-03-31 with total page 261 pages. Available in PDF, EPUB and Kindle. Book excerpt: This treatment of the basic theory of algebraic Riccati equations describes the classical as well as the more advanced algorithms for their solution in a manner that is accessible to both practitioners and scholars. It is the first book in which nonsymmetric algebraic Riccati equations are treated in a clear and systematic way. Some proofs of theoretical results have been simplified and a unified notation has been adopted. Readers will find a unified discussion of doubling algorithms, which are effective in solving algebraic Riccati equations as well as a detailed description of all classical and advanced algorithms for solving algebraic Riccati equations and their MATLAB codes. This will help the reader gain an understanding of the computational issues and provide ready-to-use implementation of the different solution techniques.

Numerical Methods for Grid Equations

Download Numerical Methods for Grid Equations PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783764322762
Total Pages : 292 pages
Book Rating : 4.3/5 (227 download)

DOWNLOAD NOW!


Book Synopsis Numerical Methods for Grid Equations by : A.A. Samarskij

Download or read book Numerical Methods for Grid Equations written by A.A. Samarskij and published by Springer Science & Business Media. This book was released on 1988-12-01 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The finite-difference solution of mathematical-physics differential equations is carried out in two stages: 1) the writing of the difference scheme (a differ ence approximation to the differential equation on a grid), 2) the computer solution of the difference equations, which are written in the form of a high order system of linear algebraic equations of special form (ill-conditioned, band-structured). Application of general linear algebra methods is not always appropriate for such systems because of the need to store a large volume of information, as well as because of the large amount of work required by these methods. For the solution of difference equations, special methods have been developed which, in one way or another, take into account special features of the problem, and which allow the solution to be found using less work than via the general methods. This work is an extension of the book Difference M ethod3 for the Solution of Elliptic Equation3 by A. A. Samarskii and V. B. Andreev which considered a whole set of questions connected with difference approximations, the con struction of difference operators, and estimation of the ~onvergence rate of difference schemes for typical elliptic boundary-value problems. Here we consider only solution methods for difference equations. The book in fact consists of two volumes.