Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Numerical Implementation Of A Deep Learning Approach To Bermuda Option Pricing
Download Numerical Implementation Of A Deep Learning Approach To Bermuda Option Pricing full books in PDF, epub, and Kindle. Read online Numerical Implementation Of A Deep Learning Approach To Bermuda Option Pricing ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Monte Carlo Methods and Models in Finance and Insurance by : Ralf Korn
Download or read book Monte Carlo Methods and Models in Finance and Insurance written by Ralf Korn and published by CRC Press. This book was released on 2010-02-26 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offering a unique balance between applications and calculations, Monte Carlo Methods and Models in Finance and Insurance incorporates the application background of finance and insurance with the theory and applications of Monte Carlo methods. It presents recent methods and algorithms, including the multilevel Monte Carlo method, the statistical Rom
Book Synopsis Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance by : El Bachir Boukherouaa
Download or read book Powering the Digital Economy: Opportunities and Risks of Artificial Intelligence in Finance written by El Bachir Boukherouaa and published by International Monetary Fund. This book was released on 2021-10-22 with total page 35 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper discusses the impact of the rapid adoption of artificial intelligence (AI) and machine learning (ML) in the financial sector. It highlights the benefits these technologies bring in terms of financial deepening and efficiency, while raising concerns about its potential in widening the digital divide between advanced and developing economies. The paper advances the discussion on the impact of this technology by distilling and categorizing the unique risks that it could pose to the integrity and stability of the financial system, policy challenges, and potential regulatory approaches. The evolving nature of this technology and its application in finance means that the full extent of its strengths and weaknesses is yet to be fully understood. Given the risk of unexpected pitfalls, countries will need to strengthen prudential oversight.
Book Synopsis Numerical Methods in Finance by : René Carmona
Download or read book Numerical Methods in Finance written by René Carmona and published by Springer Science & Business Media. This book was released on 2012-03-23 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical methods in finance have emerged as a vital field at the crossroads of probability theory, finance and numerical analysis. Based on presentations given at the workshop Numerical Methods in Finance held at the INRIA Bordeaux (France) on June 1-2, 2010, this book provides an overview of the major new advances in the numerical treatment of instruments with American exercises. Naturally it covers the most recent research on the mathematical theory and the practical applications of optimal stopping problems as they relate to financial applications. By extension, it also provides an original treatment of Monte Carlo methods for the recursive computation of conditional expectations and solutions of BSDEs and generalized multiple optimal stopping problems and their applications to the valuation of energy derivatives and assets. The articles were carefully written in a pedagogical style and a reasonably self-contained manner. The book is geared toward quantitative analysts, probabilists, and applied mathematicians interested in financial applications.
Book Synopsis Applied Quantitative Finance by : Wolfgang Karl Härdle
Download or read book Applied Quantitative Finance written by Wolfgang Karl Härdle and published by Springer. This book was released on 2017-08-02 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides practical solutions and introduces recent theoretical developments in risk management, pricing of credit derivatives, quantification of volatility and copula modeling. This third edition is devoted to modern risk analysis based on quantitative methods and textual analytics to meet the current challenges in banking and finance. It includes 14 new contributions and presents a comprehensive, state-of-the-art treatment of cutting-edge methods and topics, such as collateralized debt obligations, the high-frequency analysis of market liquidity, and realized volatility. The book is divided into three parts: Part 1 revisits important market risk issues, while Part 2 introduces novel concepts in credit risk and its management along with updated quantitative methods. The third part discusses the dynamics of risk management and includes risk analysis of energy markets and for cryptocurrencies. Digital assets, such as blockchain-based currencies, have become popular b ut are theoretically challenging when based on conventional methods. Among others, it introduces a modern text-mining method called dynamic topic modeling in detail and applies it to the message board of Bitcoins. The unique synthesis of theory and practice supported by computational tools is reflected not only in the selection of topics, but also in the fine balance of scientific contributions on practical implementation and theoretical concepts. This link between theory and practice offers theoreticians insights into considerations of applicability and, vice versa, provides practitioners convenient access to new techniques in quantitative finance. Hence the book will appeal both to researchers, including master and PhD students, and practitioners, such as financial engineers. The results presented in the book are fully reproducible and all quantlets needed for calculations are provided on an accompanying website. The Quantlet platform quantlet.de, quantlet.com, quantlet.org is an integrated QuantNet environment consisting of different types of statistics-related documents and program codes. Its goal is to promote reproducibility and offer a platform for sharing validated knowledge native to the social web. QuantNet and the corresponding Data-Driven Documents-based visualization allows readers to reproduce the tables, pictures and calculations inside this Springer book.
Book Synopsis How I Became a Quant by : Richard R. Lindsey
Download or read book How I Became a Quant written by Richard R. Lindsey and published by John Wiley & Sons. This book was released on 2011-01-11 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for How I Became a Quant "Led by two top-notch quants, Richard R. Lindsey and Barry Schachter, How I Became a Quant details the quirky world of quantitative analysis through stories told by some of today's most successful quants. For anyone who might have thought otherwise, there are engaging personalities behind all that number crunching!" --Ira Kawaller, Kawaller & Co. and the Kawaller Fund "A fun and fascinating read. This book tells the story of how academics, physicists, mathematicians, and other scientists became professional investors managing billions." --David A. Krell, President and CEO, International Securities Exchange "How I Became a Quant should be must reading for all students with a quantitative aptitude. It provides fascinating examples of the dynamic career opportunities potentially open to anyone with the skills and passion for quantitative analysis." --Roy D. Henriksson, Chief Investment Officer, Advanced Portfolio Management "Quants"--those who design and implement mathematical models for the pricing of derivatives, assessment of risk, or prediction of market movements--are the backbone of today's investment industry. As the greater volatility of current financial markets has driven investors to seek shelter from increasing uncertainty, the quant revolution has given people the opportunity to avoid unwanted financial risk by literally trading it away, or more specifically, paying someone else to take on the unwanted risk. How I Became a Quant reveals the faces behind the quant revolution, offering you?the?chance to learn firsthand what it's like to be a?quant today. In this fascinating collection of Wall Street war stories, more than two dozen quants detail their roots, roles, and contributions, explaining what they do and how they do it, as well as outlining the sometimes unexpected paths they have followed from the halls of academia to the front lines of an investment revolution.
Book Synopsis Pattern Recognition and Machine Learning by : Christopher M. Bishop
Download or read book Pattern Recognition and Machine Learning written by Christopher M. Bishop and published by Springer. This book was released on 2016-08-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to describe probability distributions when no other books apply graphical models to machine learning. No previous knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Book Synopsis Python for Finance by : Yves J. Hilpisch
Download or read book Python for Finance written by Yves J. Hilpisch and published by "O'Reilly Media, Inc.". This book was released on 2018-12-05 with total page 682 pages. Available in PDF, EPUB and Kindle. Book excerpt: The financial industry has recently adopted Python at a tremendous rate, with some of the largest investment banks and hedge funds using it to build core trading and risk management systems. Updated for Python 3, the second edition of this hands-on book helps you get started with the language, guiding developers and quantitative analysts through Python libraries and tools for building financial applications and interactive financial analytics. Using practical examples throughout the book, author Yves Hilpisch also shows you how to develop a full-fledged framework for Monte Carlo simulation-based derivatives and risk analytics, based on a large, realistic case study. Much of the book uses interactive IPython Notebooks.
Book Synopsis Data Mining and Predictive Analytics by : Daniel T. Larose
Download or read book Data Mining and Predictive Analytics written by Daniel T. Larose and published by John Wiley & Sons. This book was released on 2015-02-19 with total page 827 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant, with exclusive password-protected instructor content Data Mining and Predictive Analytics will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives.
Book Synopsis The LIBOR Market Model in Practice by : Dariusz Gatarek
Download or read book The LIBOR Market Model in Practice written by Dariusz Gatarek and published by John Wiley & Sons. This book was released on 2007-01-23 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The LIBOR Market Model (LMM) is the first model of interest rates dynamics consistent with the market practice of pricing interest rate derivatives and therefore it is widely used by financial institution for valuation of interest rate derivatives. This book provides a full practitioner's approach to the LIBOR Market Model. It adopts the specific language of a quantitative analyst to the largest possible level and is one of first books on the subject written entirely by quants. The book is divided into three parts - theory, calibration and simulation. New and important issues are covered, such as various drift approximations, various parametric and nonparametric calibrations, and the uncertain volatility approach to smile modelling; a version of the HJM model based on market observables and the duality between BGM and HJM models. Co-authored by Dariusz Gatarek, the 'G' in the BGM model who is internationally known for his work on LIBOR market models, this book offers an essential perspective on the global benchmark for short-term interest rates.
Book Synopsis Modern Computational Finance by : Antoine Savine
Download or read book Modern Computational Finance written by Antoine Savine and published by John Wiley & Sons. This book was released on 2018-11-20 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: Arguably the strongest addition to numerical finance of the past decade, Algorithmic Adjoint Differentiation (AAD) is the technology implemented in modern financial software to produce thousands of accurate risk sensitivities, within seconds, on light hardware. AAD recently became a centerpiece of modern financial systems and a key skill for all quantitative analysts, developers, risk professionals or anyone involved with derivatives. It is increasingly taught in Masters and PhD programs in finance. Danske Bank's wide scale implementation of AAD in its production and regulatory systems won the In-House System of the Year 2015 Risk award. The Modern Computational Finance books, written by three of the very people who designed Danske Bank's systems, offer a unique insight into the modern implementation of financial models. The volumes combine financial modelling, mathematics and programming to resolve real life financial problems and produce effective derivatives software. This volume is a complete, self-contained learning reference for AAD, and its application in finance. AAD is explained in deep detail throughout chapters that gently lead readers from the theoretical foundations to the most delicate areas of an efficient implementation, such as memory management, parallel implementation and acceleration with expression templates. The book comes with professional source code in C++, including an efficient, up to date implementation of AAD and a generic parallel simulation library. Modern C++, high performance parallel programming and interfacing C++ with Excel are also covered. The book builds the code step-by-step, while the code illustrates the concepts and notions developed in the book.
Book Synopsis Monte Carlo Methods in Financial Engineering by : Paul Glasserman
Download or read book Monte Carlo Methods in Financial Engineering written by Paul Glasserman and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not." --Glyn Holton, Contingency Analysis
Book Synopsis Copula Methods in Finance by : Umberto Cherubini
Download or read book Copula Methods in Finance written by Umberto Cherubini and published by John Wiley & Sons. This book was released on 2004-10-22 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Copula Methods in Finance is the first book to address the mathematics of copula functions illustrated with finance applications. It explains copulas by means of applications to major topics in derivative pricing and credit risk analysis. Examples include pricing of the main exotic derivatives (barrier, basket, rainbow options) as well as risk management issues. Particular focus is given to the pricing of asset-backed securities and basket credit derivative products and the evaluation of counterparty risk in derivative transactions.
Download or read book Python for Finance written by Yuxing Yan and published by Packt Publishing Ltd. This book was released on 2017-06-30 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn and implement various Quantitative Finance concepts using the popular Python libraries About This Book Understand the fundamentals of Python data structures and work with time-series data Implement key concepts in quantitative finance using popular Python libraries such as NumPy, SciPy, and matplotlib A step-by-step tutorial packed with many Python programs that will help you learn how to apply Python to finance Who This Book Is For This book assumes that the readers have some basic knowledge related to Python. However, he/she has no knowledge of quantitative finance. In addition, he/she has no knowledge about financial data. What You Will Learn Become acquainted with Python in the first two chapters Run CAPM, Fama-French 3-factor, and Fama-French-Carhart 4-factor models Learn how to price a call, put, and several exotic options Understand Monte Carlo simulation, how to write a Python program to replicate the Black-Scholes-Merton options model, and how to price a few exotic options Understand the concept of volatility and how to test the hypothesis that volatility changes over the years Understand the ARCH and GARCH processes and how to write related Python programs In Detail This book uses Python as its computational tool. Since Python is free, any school or organization can download and use it. This book is organized according to various finance subjects. In other words, the first edition focuses more on Python, while the second edition is truly trying to apply Python to finance. The book starts by explaining topics exclusively related to Python. Then we deal with critical parts of Python, explaining concepts such as time value of money stock and bond evaluations, capital asset pricing model, multi-factor models, time series analysis, portfolio theory, options and futures. This book will help us to learn or review the basics of quantitative finance and apply Python to solve various problems, such as estimating IBM's market risk, running a Fama-French 3-factor, 5-factor, or Fama-French-Carhart 4 factor model, estimating the VaR of a 5-stock portfolio, estimating the optimal portfolio, and constructing the efficient frontier for a 20-stock portfolio with real-world stock, and with Monte Carlo Simulation. Later, we will also learn how to replicate the famous Black-Scholes-Merton option model and how to price exotic options such as the average price call option. Style and approach This book takes a step-by-step approach in explaining the libraries and modules in Python, and how they can be used to implement various aspects of quantitative finance. Each concept is explained in depth and supplemented with code examples for better understanding.
Download or read book Backpacker written by and published by . This book was released on 2007-09 with total page 140 pages. Available in PDF, EPUB and Kindle. Book excerpt: Backpacker brings the outdoors straight to the reader's doorstep, inspiring and enabling them to go more places and enjoy nature more often. The authority on active adventure, Backpacker is the world's first GPS-enabled magazine, and the only magazine whose editors personally test the hiking trails, camping gear, and survival tips they publish. Backpacker's Editors' Choice Awards, an industry honor recognizing design, feature and product innovation, has become the gold standard against which all other outdoor-industry awards are measured.
Book Synopsis Finite Difference Methods in Financial Engineering by : Daniel J. Duffy
Download or read book Finite Difference Methods in Financial Engineering written by Daniel J. Duffy and published by John Wiley & Sons. This book was released on 2013-10-28 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: The world of quantitative finance (QF) is one of the fastest growing areas of research and its practical applications to derivatives pricing problem. Since the discovery of the famous Black-Scholes equation in the 1970's we have seen a surge in the number of models for a wide range of products such as plain and exotic options, interest rate derivatives, real options and many others. Gone are the days when it was possible to price these derivatives analytically. For most problems we must resort to some kind of approximate method. In this book we employ partial differential equations (PDE) to describe a range of one-factor and multi-factor derivatives products such as plain European and American options, multi-asset options, Asian options, interest rate options and real options. PDE techniques allow us to create a framework for modeling complex and interesting derivatives products. Having defined the PDE problem we then approximate it using the Finite Difference Method (FDM). This method has been used for many application areas such as fluid dynamics, heat transfer, semiconductor simulation and astrophysics, to name just a few. In this book we apply the same techniques to pricing real-life derivative products. We use both traditional (or well-known) methods as well as a number of advanced schemes that are making their way into the QF literature: Crank-Nicolson, exponentially fitted and higher-order schemes for one-factor and multi-factor options Early exercise features and approximation using front-fixing, penalty and variational methods Modelling stochastic volatility models using Splitting methods Critique of ADI and Crank-Nicolson schemes; when they work and when they don't work Modelling jumps using Partial Integro Differential Equations (PIDE) Free and moving boundary value problems in QF Included with the book is a CD containing information on how to set up FDM algorithms, how to map these algorithms to C++ as well as several working programs for one-factor and two-factor models. We also provide source code so that you can customize the applications to suit your own needs.
Book Synopsis Harnessing Technology for Deeper Learning by : Scott McLeod
Download or read book Harnessing Technology for Deeper Learning written by Scott McLeod and published by Solutions for Creating the Lea. This book was released on 2018-09-21 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "By embracing technology in the classroom instead of ignorning or banning it, every educator can promote deeper learning across all subjects and grade levels. Using the 4 Shifts Protocol, 'Harnessing Technology for Deeper Learning' imparts valuable strategies for avoiding missteps, overcoming implemention challenges, and (re)designing instruction that is both meaningful and engaging".
Book Synopsis Robust Optimization by : Aharon Ben-Tal
Download or read book Robust Optimization written by Aharon Ben-Tal and published by Princeton University Press. This book was released on 2009-08-10 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robust optimization is still a relatively new approach to optimization problems affected by uncertainty, but it has already proved so useful in real applications that it is difficult to tackle such problems today without considering this powerful methodology. Written by the principal developers of robust optimization, and describing the main achievements of a decade of research, this is the first book to provide a comprehensive and up-to-date account of the subject. Robust optimization is designed to meet some major challenges associated with uncertainty-affected optimization problems: to operate under lack of full information on the nature of uncertainty; to model the problem in a form that can be solved efficiently; and to provide guarantees about the performance of the solution. The book starts with a relatively simple treatment of uncertain linear programming, proceeding with a deep analysis of the interconnections between the construction of appropriate uncertainty sets and the classical chance constraints (probabilistic) approach. It then develops the robust optimization theory for uncertain conic quadratic and semidefinite optimization problems and dynamic (multistage) problems. The theory is supported by numerous examples and computational illustrations. An essential book for anyone working on optimization and decision making under uncertainty, Robust Optimization also makes an ideal graduate textbook on the subject.