Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Numerical Continuation Methods For Non Linear Equations And Bifurcation Problems
Download Numerical Continuation Methods For Non Linear Equations And Bifurcation Problems full books in PDF, epub, and Kindle. Read online Numerical Continuation Methods For Non Linear Equations And Bifurcation Problems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Numerical Continuation and Bifurcation in Nonlinear PDEs by : Hannes Uecker
Download or read book Numerical Continuation and Bifurcation in Nonlinear PDEs written by Hannes Uecker and published by SIAM. This book was released on 2021-08-19 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a hands-on approach to numerical continuation and bifurcation for nonlinear PDEs in 1D, 2D, and 3D. Partial differential equations (PDEs) are the main tool to describe spatially and temporally extended systems in nature. PDEs usually come with parameters, and the study of the parameter dependence of their solutions is an important task. Letting one parameter vary typically yields a branch of solutions, and at special parameter values, new branches may bifurcate. After a concise review of some analytical background and numerical methods, the author explains the free MATLAB package pde2path by using a large variety of examples with demo codes that can be easily adapted to the reader's given problem. Numerical Continuation and Bifurcation in Nonlinear PDEs will appeal to applied mathematicians and scientists from physics, chemistry, biology, and economics interested in the numerical solution of nonlinear PDEs, particularly the parameter dependence of solutions. It can be used as a supplemental text in courses on nonlinear PDEs and modeling and bifurcation.
Book Synopsis Numerical Continuation Methods by : Eugene L. Allgower
Download or read book Numerical Continuation Methods written by Eugene L. Allgower and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past fifteen years two new techniques have yielded extremely important contributions toward the numerical solution of nonlinear systems of equations. This book provides an introduction to and an up-to-date survey of numerical continuation methods (tracing of implicitly defined curves) of both predictor-corrector and piecewise-linear types. It presents and analyzes implementations aimed at applications to the computation of zero points, fixed points, nonlinear eigenvalue problems, bifurcation and turning points, and economic equilibria. Many algorithms are presented in a pseudo code format. An appendix supplies five sample FORTRAN programs with numerical examples, which readers can adapt to fit their purposes, and a description of the program package SCOUT for analyzing nonlinear problems via piecewise-linear methods. An extensive up-to-date bibliography spanning 46 pages is included. The material in this book has been presented to students of mathematics, engineering and sciences with great success, and will also serve as a valuable tool for researchers in the field.
Book Synopsis Numerical Continuation Methods for Dynamical Systems by : Bernd Krauskopf
Download or read book Numerical Continuation Methods for Dynamical Systems written by Bernd Krauskopf and published by Springer. This book was released on 2007-11-06 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Path following in combination with boundary value problem solvers has emerged as a continuing and strong influence in the development of dynamical systems theory and its application. It is widely acknowledged that the software package AUTO - developed by Eusebius J. Doedel about thirty years ago and further expanded and developed ever since - plays a central role in the brief history of numerical continuation. This book has been compiled on the occasion of Sebius Doedel's 60th birthday. Bringing together for the first time a large amount of material in a single, accessible source, it is hoped that the book will become the natural entry point for researchers in diverse disciplines who wish to learn what numerical continuation techniques can achieve. The book opens with a foreword by Herbert B. Keller and lecture notes by Sebius Doedel himself that introduce the basic concepts of numerical bifurcation analysis. The other chapters by leading experts discuss continuation for various types of systems and objects and showcase examples of how numerical bifurcation analysis can be used in concrete applications. Topics that are treated include: interactive continuation tools, higher-dimensional continuation, the computation of invariant manifolds, and continuation techniques for slow-fast systems, for symmetric Hamiltonian systems, for spatially extended systems and for systems with delay. Three chapters review physical applications: the dynamics of a SQUID, global bifurcations in laser systems, and dynamics and bifurcations in electronic circuits.
Book Synopsis Numerical Methods for Bifurcations of Dynamical Equilibria by : Willy J. F. Govaerts
Download or read book Numerical Methods for Bifurcations of Dynamical Equilibria written by Willy J. F. Govaerts and published by SIAM. This book was released on 2000-01-01 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamical systems arise in all fields of applied mathematics. The author focuses on the description of numerical methods for the detection, computation, and continuation of equilibria and bifurcation points of equilibria of dynamical systems. This subfield has the particular attraction of having links with the geometric theory of differential equations, numerical analysis, and linear algebra.
Download or read book Nonlinear PDEs written by Guido Schneider and published by American Mathematical Soc.. This book was released on 2017-10-26 with total page 593 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs. The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrödinger equation and the Ginzburg-Landau equation. These examples often occur as simplest possible models, namely as amplitude or modulation equations, for some real world phenomena such as nonlinear waves and pattern formation. Part IV explores in more detail the connections between such complicated physical systems and the reduced models. For many models, a mathematically rigorous justification by approximation results is given. The parts of the book are kept as self-contained as possible. The book is suitable for self-study, and there are various possibilities to build one- or two-semester courses from the book.
Book Synopsis Introduction to Numerical Continuation Methods by : Eugene L. Allgower
Download or read book Introduction to Numerical Continuation Methods written by Eugene L. Allgower and published by SIAM. This book was released on 2003-01-01 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical continuation methods have provided important contributions toward the numerical solution of nonlinear systems of equations for many years. The methods may be used not only to compute solutions, which might otherwise be hard to obtain, but also to gain insight into qualitative properties of the solutions. Introduction to Numerical Continuation Methods, originally published in 1979, was the first book to provide easy access to the numerical aspects of predictor corrector continuation and piecewise linear continuation methods. Not only do these seemingly distinct methods share many common features and general principles, they can be numerically implemented in similar ways. Introduction to Numerical Continuation Methods also features the piecewise linear approximation of implicitly defined surfaces, the algorithms of which are frequently used in computer graphics, mesh generation, and the evaluation of surface integrals.
Book Synopsis Mathematics of Complexity and Dynamical Systems by : Robert A. Meyers
Download or read book Mathematics of Complexity and Dynamical Systems written by Robert A. Meyers and published by Springer Science & Business Media. This book was released on 2011-10-05 with total page 1885 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.
Book Synopsis Computational Solution of Nonlinear Systems of Equations by : Eugene L. Allgower
Download or read book Computational Solution of Nonlinear Systems of Equations written by Eugene L. Allgower and published by American Mathematical Soc.. This book was released on 1990-04-03 with total page 788 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear equations arise in essentially every branch of modern science, engineering, and mathematics. However, in only a very few special cases is it possible to obtain useful solutions to nonlinear equations via analytical calculations. As a result, many scientists resort to computational methods. This book contains the proceedings of the Joint AMS-SIAM Summer Seminar, ``Computational Solution of Nonlinear Systems of Equations,'' held in July 1988 at Colorado State University. The aim of the book is to give a wide-ranging survey of essentially all of the methods which comprise currently active areas of research in the computational solution of systems of nonlinear equations. A number of ``entry-level'' survey papers were solicited, and a series of test problems has been collected in an appendix. Most of the articles are accessible to students who have had a course in numerical analysis.
Book Synopsis Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem by : Roland Glowinski
Download or read book Variational Methods for the Numerical Solution of Nonlinear Elliptic Problem written by Roland Glowinski and published by SIAM. This book was released on 2015-11-04 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: Variational Methods for the Numerical Solution of Nonlinear Elliptic Problems?addresses computational methods that have proven efficient for the solution of a large variety of nonlinear elliptic problems. These methods can be applied to many problems in science and engineering, but this book focuses on their application to problems in continuum mechanics and physics. This book differs from others on the topic by presenting examples of the power and versatility of operator-splitting methods; providing a detailed introduction to alternating direction methods of multipliers and their applicability to the solution of nonlinear (possibly nonsmooth) problems from science and engineering; and showing that nonlinear least-squares methods, combined with operator-splitting and conjugate gradient algorithms, provide efficient tools for the solution of highly nonlinear problems. The book provides useful insights suitable for advanced graduate students, faculty, and researchers in applied and computational mathematics as well as research engineers, mathematical physicists, and systems engineers.
Book Synopsis Harmonic Balance for Nonlinear Vibration Problems by : Malte Krack
Download or read book Harmonic Balance for Nonlinear Vibration Problems written by Malte Krack and published by Springer. This book was released on 2019-03-23 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents an introduction to Harmonic Balance for nonlinear vibration problems, covering the theoretical basis, its application to mechanical systems, and its computational implementation. Harmonic Balance is an approximation method for the computation of periodic solutions of nonlinear ordinary and differential-algebraic equations. It outperforms numerical forward integration in terms of computational efficiency often by several orders of magnitude. The method is widely used in the analysis of nonlinear systems, including structures, fluids and electric circuits. The book includes solved exercises which illustrate the advantages of Harmonic Balance over alternative methods as well as its limitations. The target audience primarily comprises graduate and post-graduate students, but the book may also be beneficial for research experts and practitioners in industry.
Book Synopsis Solving Nonlinear Equations with Newton's Method by : C. T. Kelley
Download or read book Solving Nonlinear Equations with Newton's Method written by C. T. Kelley and published by SIAM. This book was released on 2003-01-01 with total page 117 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on Newton's method is a user-oriented guide to algorithms and implementation. In just over 100 pages, it shows, via algorithms in pseudocode, in MATLAB, and with several examples, how one can choose an appropriate Newton-type method for a given problem, diagnose problems, and write an efficient solver or apply one written by others. It contains trouble-shooting guides to the major algorithms, their most common failure modes, and the likely causes of failure. It also includes many worked-out examples (available on the SIAM website) in pseudocode and a collection of MATLAB codes, allowing readers to experiment with the algorithms easily and implement them in other languages.
Book Synopsis Recipes for Continuation by : Harry Dankowicz
Download or read book Recipes for Continuation written by Harry Dankowicz and published by SIAM. This book was released on 2013-08-08 with total page 585 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive introduction to the mathematical methodology of parameter continuation. It develops a systematic formalism for constructing and implementing abstract representations of continuation problems with equal emphasis on theoretical rigor, algorithm development and software engineering. The book demonstrates the use of fully developed toolbox templates for boundary-value problems to the analysis of periodic orbits, quasi-periodic invariant tori, and connecting orbits between equilibria and/or periodic orbits. The book contains extensive and fully-worked examples that illustrate the application of the MATLAB-based Computational Continuation Core (COCO) to cutting-edge research in applied dynamical systems. Many exercises and open-ended projects on both theoretical and algorithmic aspects of the material are provided, suitable for self-study and course assignments. It is intended for students and teachers of nonlinear dynamics and engineering at the advanced undergraduate or first-year graduate level, as well as practitioners engaged in modeling dynamical systems or software development.
Book Synopsis Introduction to Nonlinear Aeroelasticity by : Grigorios Dimitriadis
Download or read book Introduction to Nonlinear Aeroelasticity written by Grigorios Dimitriadis and published by John Wiley & Sons. This book was released on 2017-03-10 with total page 944 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduction to Nonlinear Aeroelasticity Introduces the latest developments and technologies in the area of nonlinear aeroelasticity Nonlinear aeroelasticity has become an increasingly popular research area in recent years. There have been many driving forces behind this development, increasingly flexible structures, nonlinear control laws, materials with nonlinear characteristics and so on. Introduction to Nonlinear Aeroelasticity covers the theoretical basics in nonlinear aeroelasticity and applies the theory to practical problems. As nonlinear aeroelasticity is a combined topic, necessitating expertise from different areas, the book introduces methodologies from a variety of disciplines such as nonlinear dynamics, bifurcation analysis, unsteady aerodynamics, non-smooth systems and others. The emphasis throughout is on the practical application of the theories and methods, so as to enable the reader to apply their newly acquired knowledge Key features: Covers the major topics in nonlinear aeroelasticity, from the galloping of cables to supersonic panel flutter Discusses nonlinear dynamics, bifurcation analysis, numerical continuation, unsteady aerodynamics and non-smooth systems Considers the practical application of the theories and methods Covers nonlinear dynamics, bifurcation analysis and numerical methods Accompanied by a website hosting Matlab code Introduction to Nonlinear Aeroelasticity is a comprehensive reference for researchers and workers in industry and is also a useful introduction to the subject for graduate and undergraduate students across engineering disciplines.
Book Synopsis Numerical Continuation Methods for Non-linear Equations and Bifurcation Problems by : James P. Abbott
Download or read book Numerical Continuation Methods for Non-linear Equations and Bifurcation Problems written by James P. Abbott and published by . This book was released on 1977 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Averaging Methods in Nonlinear Dynamical Systems by : Jan A. Sanders
Download or read book Averaging Methods in Nonlinear Dynamical Systems written by Jan A. Sanders and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book we have developed the asymptotic analysis of nonlinear dynamical systems. We have collected a large number of results, scattered throughout the literature and presented them in a way to illustrate both the underlying common theme, as well as the diversity of problems and solutions. While most of the results are known in the literature, we added new material which we hope will also be of interest to the specialists in this field. The basic theory is discussed in chapters two and three. Improved results are obtained in chapter four in the case of stable limit sets. In chapter five we treat averaging over several angles; here the theory is less standardized, and even in our simplified approach we encounter many open problems. Chapter six deals with the definition of normal form. After making the somewhat philosophical point as to what the right definition should look like, we derive the second order normal form in the Hamiltonian case, using the classical method of generating functions. In chapter seven we treat Hamiltonian systems. The resonances in two degrees of freedom are almost completely analyzed, while we give a survey of results obtained for three degrees of freedom systems. The appendices contain a mix of elementary results, expansions on the theory and research problems.
Book Synopsis Continuation Techniques and Bifurcation Problems by : MITTELMANN
Download or read book Continuation Techniques and Bifurcation Problems written by MITTELMANN and published by Birkhäuser. This book was released on 2013-11-21 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis of parameter-dependent nonlinear has received much attention in recent years. Numerical continuation techniques allow the efficient computation of solution branches in a one-parameter problem. In many cases continuation procedures are used as part of a more complete analysis of a nonlinear problem, based on bifurcation theory and singularity theory. These theories contribute to the understanding of many nonlinear phenomena in nature and they form the basis for various analytical and numerical tools, which provide qualitative and quantitative results about nonlinear systems. In this issue we have collected a number of papers dealing with continuation techniques and bifurcation problems. Readers familiar with the notions of continuation and bifurcation will find recent research results addressing a variety of aspects in this issue. Those who intend to learn about the field or a specific topic in it may find it useful to first consult earlier literature on the numerical treatment of these problems together with some theoretical background. The papers in this issue fall naturally into different groups.
Book Synopsis Recent Advances in Numerical Analysis by : Carl De Boor
Download or read book Recent Advances in Numerical Analysis written by Carl De Boor and published by . This book was released on 1978 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Positive functions and some applications to stability questions for numerical methods; Constructive polynomial approximation in sobolev spaces; Questions of numerical condition related to polynomials; Global homotopies and newton methods; Problems with different time scales; Accuracy and resolution in the computation of solutions of linear and nonlinear equations; Finite element approximation to the one-dimensional stefan problem; The hodie method and its performance for solving elliptic partial differential equations; Solving ODE's with discrete data in SPEAKEASY; Perturbation theory for the generalized eigenvalue problem; Some remarks on good, simple, and optimal quadrature formulas; Linear differential equations and kronecker's canonical form.