Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Nonparametric And Semiparametric Methods For Three Incomplete Data Structures
Download Nonparametric And Semiparametric Methods For Three Incomplete Data Structures full books in PDF, epub, and Kindle. Read online Nonparametric And Semiparametric Methods For Three Incomplete Data Structures ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Nonparametric and Semiparametric Methods for Three Incomplete Data Structures by : Christopher Masaya Quale
Download or read book Nonparametric and Semiparametric Methods for Three Incomplete Data Structures written by Christopher Masaya Quale and published by . This book was released on 2001 with total page 222 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Nonparametric and Semiparametric Models by : Wolfgang Karl Härdle
Download or read book Nonparametric and Semiparametric Models written by Wolfgang Karl Härdle and published by Springer Science & Business Media. This book was released on 2012-08-27 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: The statistical and mathematical principles of smoothing with a focus on applicable techniques are presented in this book. It naturally splits into two parts: The first part is intended for undergraduate students majoring in mathematics, statistics, econometrics or biometrics whereas the second part is intended to be used by master and PhD students or researchers. The material is easy to accomplish since the e-book character of the text gives a maximum of flexibility in learning (and teaching) intensity.
Book Synopsis Nonparametric and Semiparametric Methods in Econometrics and Statistics by : William A. Barnett
Download or read book Nonparametric and Semiparametric Methods in Econometrics and Statistics written by William A. Barnett and published by Cambridge University Press. This book was released on 1991-06-28 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Papers from a 1988 symposium on the estimation and testing of models that impose relatively weak restrictions on the stochastic behaviour of data.
Book Synopsis American Doctoral Dissertations by :
Download or read book American Doctoral Dissertations written by and published by . This book was released on 2001 with total page 776 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Dissertation Abstracts International by :
Download or read book Dissertation Abstracts International written by and published by . This book was released on 2008 with total page 906 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Transactions on Computational Science III by : Kenneth Tan
Download or read book Transactions on Computational Science III written by Kenneth Tan and published by Springer Science & Business Media. This book was released on 2009-02-13 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Transactions on Computational Science journal is part of the Springer series Lecture Notes in Computer Science, and is devoted to the gamut of computational science issues, from theoretical aspects to application-dependent studies and the va- dation of emerging technologies. The current issue is devoted to computer systems research and the application of such research, which naturally complement each other. The issue is comprised of Part 1: Computational Visualization and Optimization, and Part 2: Computational Methods for Model Design and Analysis. Part 1 – Computational Visualization and Optimization – is devoted to state-of-the-art research carried out in this area with the use of novel computational methods. It is c- prised of five papers, each addressing a specific computational problem in the areas of shared virtual spaces, dynamic visualization, multimodal user interfaces, computational geometry, and parallel simulation, respectively. Part 2 – Computational Methods for Model Design and Analysis – continues the topic with an in-depth look at selected computational science research in the areas of data representation and analysis. The four papers comprising this part cover such areas as efficient reversible logic design, missing data analysis, stochastic computation and neural network representation for eccentric sphere models. Each paper describes a detailed experiment or a case study of the methodology presented to amplify the impact of the contribution.
Book Synopsis Semiparametric Theory and Missing Data by : Anastasios Tsiatis
Download or read book Semiparametric Theory and Missing Data written by Anastasios Tsiatis and published by Springer Science & Business Media. This book was released on 2007-01-15 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes current knowledge regarding the theory of estimation for semiparametric models with missing data, in an organized and comprehensive manner. It starts with the study of semiparametric methods when there are no missing data. The description of the theory of estimation for semiparametric models is both rigorous and intuitive, relying on geometric ideas to reinforce the intuition and understanding of the theory. These methods are then applied to problems with missing, censored, and coarsened data with the goal of deriving estimators that are as robust and efficient as possible.
Book Synopsis Machine Learning Approaches to Bioinformatics by : Zheng Rong Yang
Download or read book Machine Learning Approaches to Bioinformatics written by Zheng Rong Yang and published by World Scientific. This book was released on 2010 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers a wide range of subjects in applying machine learning approaches for bioinformatics projects. The book succeeds on two key unique features. First, it introduces the most widely used machine learning approaches in bioinformatics and discusses, with evaluations from real case studies, how they are used in individual bioinformatics projects. Second, it introduces state-of-the-art bioinformatics research methods. The theoretical parts and the practical parts are well integrated for readers to follow the existing procedures in individual research. Unlike most of the bioinformatics books on the market, the content coverage is not limited to just one subject. A broad spectrum of relevant topics in bioinformatics including systematic data mining and computational systems biology researches are brought together in this book, thereby offering an efficient and convenient platform for teaching purposes. An essential reference for both final year undergraduates and graduate students in universities, as well as a comprehensive handbook for new researchers, this book will also serve as a practical guide for software development in relevant bioinformatics projects.
Book Synopsis Exploring Advances in Interdisciplinary Data Mining and Analytics: New Trends by : Taniar, David
Download or read book Exploring Advances in Interdisciplinary Data Mining and Analytics: New Trends written by Taniar, David and published by IGI Global. This book was released on 2011-12-31 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is an updated look at the state of technology in the field of data mining and analytics offering the latest technological, analytical, ethical, and commercial perspectives on topics in data mining"--Provided by publisher.
Book Synopsis Mixed Effects Models for Complex Data by : Lang Wu
Download or read book Mixed Effects Models for Complex Data written by Lang Wu and published by CRC Press. This book was released on 2009-11-11 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although standard mixed effects models are useful in a range of studies, other approaches must often be used in correlation with them when studying complex or incomplete data. Mixed Effects Models for Complex Data discusses commonly used mixed effects models and presents appropriate approaches to address dropouts, missing data, measurement errors, censoring, and outliers. For each class of mixed effects model, the author reviews the corresponding class of regression model for cross-sectional data. An overview of general models and methods, along with motivating examples After presenting real data examples and outlining general approaches to the analysis of longitudinal/clustered data and incomplete data, the book introduces linear mixed effects (LME) models, generalized linear mixed models (GLMMs), nonlinear mixed effects (NLME) models, and semiparametric and nonparametric mixed effects models. It also includes general approaches for the analysis of complex data with missing values, measurement errors, censoring, and outliers. Self-contained coverage of specific topics Subsequent chapters delve more deeply into missing data problems, covariate measurement errors, and censored responses in mixed effects models. Focusing on incomplete data, the book also covers survival and frailty models, joint models of survival and longitudinal data, robust methods for mixed effects models, marginal generalized estimating equation (GEE) models for longitudinal or clustered data, and Bayesian methods for mixed effects models. Background material In the appendix, the author provides background information, such as likelihood theory, the Gibbs sampler, rejection and importance sampling methods, numerical integration methods, optimization methods, bootstrap, and matrix algebra. Failure to properly address missing data, measurement errors, and other issues in statistical analyses can lead to severely biased or misleading results. This book explores the biases that arise when naïve methods are used and shows which approaches should be used to achieve accurate results in longitudinal data analysis.
Book Synopsis Data Analysis Using Hierarchical Generalized Linear Models with R by : Youngjo Lee
Download or read book Data Analysis Using Hierarchical Generalized Linear Models with R written by Youngjo Lee and published by CRC Press. This book was released on 2017-07-06 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since their introduction, hierarchical generalized linear models (HGLMs) have proven useful in various fields by allowing random effects in regression models. Interest in the topic has grown, and various practical analytical tools have been developed. This book summarizes developments within the field and, using data examples, illustrates how to analyse various kinds of data using R. It provides a likelihood approach to advanced statistical modelling including generalized linear models with random effects, survival analysis and frailty models, multivariate HGLMs, factor and structural equation models, robust modelling of random effects, models including penalty and variable selection and hypothesis testing. This example-driven book is aimed primarily at researchers and graduate students, who wish to perform data modelling beyond the frequentist framework, and especially for those searching for a bridge between Bayesian and frequentist statistics.
Book Synopsis Semiparametric and Nonparametric Econometrics by : Aman Ullah
Download or read book Semiparametric and Nonparametric Econometrics written by Aman Ullah and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last three decades much research in empirical and theoretical economics has been carried on under various assumptions. For example a parametric functional form of the regression model, the heteroskedasticity, and the autocorrelation is always as sumed, usually linear. Also, the errors are assumed to follow certain parametric distri butions, often normal. A disadvantage of parametric econometrics based on these assumptions is that it may not be robust to the slight data inconsistency with the particular parametric specification. Indeed any misspecification in the functional form may lead to erroneous conclusions. In view of these problems, recently there has been significant interest in 'the semiparametric/nonparametric approaches to econometrics. The semiparametric approach considers econometric models where one component has a parametric and the other, which is unknown, a nonparametric specification (Manski 1984 and Horowitz and Neumann 1987, among others). The purely non parametric approach, on the other hand, does not specify any component of the model a priori. The main ingredient of this approach is the data based estimation of the unknown joint density due to Rosenblatt (1956). Since then, especially in the last decade, a vast amount of literature has appeared on nonparametric estimation in statistics journals. However, this literature is mostly highly technical and this may partly be the reason why very little is known about it in econometrics, although see Bierens (1987) and Ullah (1988).
Book Synopsis Smoothing and Regression by : Michael G. Schimek
Download or read book Smoothing and Regression written by Michael G. Schimek and published by John Wiley & Sons. This book was released on 2013-05-29 with total page 682 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to a wide variety of univariate and multivariate smoothing techniques for regression Smoothing and Regression: Approaches, Computation, and Application bridges the many gaps that exist among competing univariate and multivariate smoothing techniques. It introduces, describes, and in some cases compares a large number of the latest and most advanced techniques for regression modeling. Unlike many other volumes on this topic, which are highly technical and specialized, this book discusses all methods in light of both computational efficiency and their applicability for real data analysis. Using examples of applications from the biosciences, environmental sciences, engineering, and economics, as well as medical research and marketing, this volume addresses the theory, computation, and application of each approach. A number of the techniques discussed, such as smoothing under shape restrictions or of dependent data, are presented for the first time in book form. Special features of this book include: * Comprehensive coverage of smoothing and regression with software hints and applications from a wide variety of disciplines * A unified, easy-to-follow format * Contributions from more than 25 leading researchers from around the world * More than 150 illustrations also covering new graphical techniques important for exploratory data analysis and visualization of high-dimensional problems * Extensive end-of-chapter references For professionals and aspiring professionals in statistics, applied mathematics, computer science, and econometrics, as well as for researchers in the applied and social sciences, Smoothing and Regression is a unique and important new resource destined to become one the most frequently consulted references in the field.
Book Synopsis Bootstrap Methods and Their Application by : A. C. Davison
Download or read book Bootstrap Methods and Their Application written by A. C. Davison and published by Cambridge University Press. This book was released on 1997-10-28 with total page 606 pages. Available in PDF, EPUB and Kindle. Book excerpt: Disk contains the library functions and documentation for use with Splus for Windows.
Book Synopsis Celebrating Statistics by : A. C. Davison
Download or read book Celebrating Statistics written by A. C. Davison and published by OUP Oxford. This book was released on 2005-09-22 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sir David Cox is among the most important statisticians of the past half-century. He has made pioneering and highly influential contributions to a uniquely wide range of topics in statistics and applied probability. His teaching has inspired generations of students, and many well-known researchers have begun as his graduate students or have worked with him at early stages of their careers. Legions of others have been stimulated and enlightened by the clear, concise, and direct exposition exemplified by his many books, papers, and lectures. This book presents a collection of chapters by major statistical researchers who attended a conference held at the University of Neuchatel in July 2004 to celebrate David Cox's 80th birthday. Each chapter is carefully crafted and collectively present current developments across a wide range of research areas from epidemiology, environmental science, finance, computing and medicine. Edited by Anthony Davison, Ecole Polytechnique Federale de Lausanne, Switzerland; Yadolah Dodge, University of Neuchatel, Switzerland; and N. Wermuth, Goteborg University, Sweden, with chapters by Ole E. Barndorff-Nielsen, Sarah C. Darby, Christina Davies, Peter J. Diggle, David Firth, Peter Hall, Valerie S. Isham, Kung-Yee Liang, Peter McCullagh, Paul McGale, Amilcare Porporato, Nancy Reid, Brian D. Ripley, Ignacio Rodriguez-Iturbe, Andrea Rotnitzky, Neil Shephard, Scott L. Zeger, and including a brief biography of David Cox, this book is suitable for students of statistics, epidemiology, environmental science, finance, computing and medicine, and academic and practising statisticians.
Book Synopsis Missing Data in Longitudinal Studies by : Michael J. Daniels
Download or read book Missing Data in Longitudinal Studies written by Michael J. Daniels and published by CRC Press. This book was released on 2008-03-11 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Drawing from the authors' own work and from the most recent developments in the field, Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis describes a comprehensive Bayesian approach for drawing inference from incomplete data in longitudinal studies. To illustrate these methods, the authors employ
Book Synopsis Flexible Imputation of Missing Data, Second Edition by : Stef van Buuren
Download or read book Flexible Imputation of Missing Data, Second Edition written by Stef van Buuren and published by CRC Press. This book was released on 2018-07-17 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.