Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Nonlinear Modelling Of High Frequency Financial Time Series
Download Nonlinear Modelling Of High Frequency Financial Time Series full books in PDF, epub, and Kindle. Read online Nonlinear Modelling Of High Frequency Financial Time Series ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Author :Torben Gustav Andersen Publisher :Springer Science & Business Media ISBN 13 :3540712976 Total Pages :1045 pages Book Rating :4.5/5 (47 download)
Book Synopsis Handbook of Financial Time Series by : Torben Gustav Andersen
Download or read book Handbook of Financial Time Series written by Torben Gustav Andersen and published by Springer Science & Business Media. This book was released on 2009-04-21 with total page 1045 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Handbook of Financial Time Series gives an up-to-date overview of the field and covers all relevant topics both from a statistical and an econometrical point of view. There are many fine contributions, and a preamble by Nobel Prize winner Robert F. Engle.
Book Synopsis Nonlinear Modelling of High Frequency Financial Time Series by : Christian L. Dunis
Download or read book Nonlinear Modelling of High Frequency Financial Time Series written by Christian L. Dunis and published by John Wiley & Sons. This book was released on 1998-07-09 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear Modelling of High Frequency Financial Time Series Edited by Christian Dunis and Bin Zhou In the competitive and risky environment of today's financial markets, daily prices and models based upon low frequency price series data do not provide the level of accuracy required by traders and a growing number of risk managers. To improve results, more and more researchers and practitioners are turning to high frequency data. Nonlinear Modelling of High Frequency Financial Time Series presents the latest developments and views of leading international researchers and market practitioners, in modelling high frequency data in finance. Combining both nonlinear modelling and intraday data for financial markets, the editors provide a fascinating foray into this extremely popular discipline. This book evolves around four major themes. The first introductory section focuses on high frequency financial data. The second part examines the exact nature of the time series considered: several linearity tests are presented and applied and their modelling implications assessed. The third and fourth parts are dedicated to modelling and forecasting these financial time series.
Book Synopsis Modeling Financial Time Series with S-PLUS by : Eric Zivot
Download or read book Modeling Financial Time Series with S-PLUS written by Eric Zivot and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of financial econometrics has exploded over the last decade This book represents an integration of theory, methods, and examples using the S-PLUS statistical modeling language and the S+FinMetrics module to facilitate the practice of financial econometrics. This is the first book to show the power of S-PLUS for the analysis of time series data. It is written for researchers and practitioners in the finance industry, academic researchers in economics and finance, and advanced MBA and graduate students in economics and finance. Readers are assumed to have a basic knowledge of S-PLUS and a solid grounding in basic statistics and time series concepts. This Second Edition is updated to cover S+FinMetrics 2.0 and includes new chapters on copulas, nonlinear regime switching models, continuous-time financial models, generalized method of moments, semi-nonparametric conditional density models, and the efficient method of moments. Eric Zivot is an associate professor and Gary Waterman Distinguished Scholar in the Economics Department, and adjunct associate professor of finance in the Business School at the University of Washington. He regularly teaches courses on econometric theory, financial econometrics and time series econometrics, and is the recipient of the Henry T. Buechel Award for Outstanding Teaching. He is an associate editor of Studies in Nonlinear Dynamics and Econometrics. He has published papers in the leading econometrics journals, including Econometrica, Econometric Theory, the Journal of Business and Economic Statistics, Journal of Econometrics, and the Review of Economics and Statistics. Jiahui Wang is an employee of Ronin Capital LLC. He received a Ph.D. in Economics from the University of Washington in 1997. He has published in leading econometrics journals such as Econometrica and Journal of Business and Economic Statistics, and is the Principal Investigator of National Science Foundation SBIR grants. In 2002 Dr. Wang was selected as one of the "2000 Outstanding Scholars of the 21st Century" by International Biographical Centre.
Book Synopsis High-Frequency Financial Econometrics by : Yacine Aït-Sahalia
Download or read book High-Frequency Financial Econometrics written by Yacine Aït-Sahalia and published by Princeton University Press. This book was released on 2014-07-21 with total page 683 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive introduction to the statistical and econometric methods for analyzing high-frequency financial data High-frequency trading is an algorithm-based computerized trading practice that allows firms to trade stocks in milliseconds. Over the last fifteen years, the use of statistical and econometric methods for analyzing high-frequency financial data has grown exponentially. This growth has been driven by the increasing availability of such data, the technological advancements that make high-frequency trading strategies possible, and the need of practitioners to analyze these data. This comprehensive book introduces readers to these emerging methods and tools of analysis. Yacine Aït-Sahalia and Jean Jacod cover the mathematical foundations of stochastic processes, describe the primary characteristics of high-frequency financial data, and present the asymptotic concepts that their analysis relies on. Aït-Sahalia and Jacod also deal with estimation of the volatility portion of the model, including methods that are robust to market microstructure noise, and address estimation and testing questions involving the jump part of the model. As they demonstrate, the practical importance and relevance of jumps in financial data are universally recognized, but only recently have econometric methods become available to rigorously analyze jump processes. Aït-Sahalia and Jacod approach high-frequency econometrics with a distinct focus on the financial side of matters while maintaining technical rigor, which makes this book invaluable to researchers and practitioners alike.
Book Synopsis Econometric Forecasting and High-frequency Data Analysis by : Roberto S. Mariano
Download or read book Econometric Forecasting and High-frequency Data Analysis written by Roberto S. Mariano and published by World Scientific. This book was released on 2008 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: This important book consists of surveys of high-frequency financial data analysis and econometric forecasting, written by pioneers in these areas including Nobel laureate Lawrence Klein. Some of the chapters were presented as tutorials to an audience in the Econometric Forecasting and High-Frequency Data Analysis Workshop at the Institute for Mathematical Science, National University of Singapore in May 2006. They will be of interest to researchers working in macroeconometrics as well as financial econometrics. Moreover, readers will find these chapters useful as a guide to the literature as well as suggestions for future research. Sample Chapter(s). Foreword (32 KB). Chapter 1: Forecast Uncertainty, Its Representation and Evaluation* (97 KB). Contents: Forecasting Uncertainty, Its Representation and Evaluation (K F Wallis); The University of Pennsylvania Models for High-Frequency Macroeconomic Modeling (L R Klein & S Ozmucur); Forecasting Seasonal Time Series (P H Franses); Car and Affine Processes (C Gourieroux); Multivariate Time Series Analysis and Forecasting (M Deistler). Readership: Professionals and researchers in econometric forecasting and financial data analysis.
Book Synopsis Nonlinear Time Series Analysis by : Ruey S. Tsay
Download or read book Nonlinear Time Series Analysis written by Ruey S. Tsay and published by John Wiley & Sons. This book was released on 2018-09-13 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive resource that draws a balance between theory and applications of nonlinear time series analysis Nonlinear Time Series Analysis offers an important guide to both parametric and nonparametric methods, nonlinear state-space models, and Bayesian as well as classical approaches to nonlinear time series analysis. The authors—noted experts in the field—explore the advantages and limitations of the nonlinear models and methods and review the improvements upon linear time series models. The need for this book is based on the recent developments in nonlinear time series analysis, statistical learning, dynamic systems and advanced computational methods. Parametric and nonparametric methods and nonlinear and non-Gaussian state space models provide a much wider range of tools for time series analysis. In addition, advances in computing and data collection have made available large data sets and high-frequency data. These new data make it not only feasible, but also necessary to take into consideration the nonlinearity embedded in most real-world time series. This vital guide: • Offers research developed by leading scholars of time series analysis • Presents R commands making it possible to reproduce all the analyses included in the text • Contains real-world examples throughout the book • Recommends exercises to test understanding of material presented • Includes an instructor solutions manual and companion website Written for students, researchers, and practitioners who are interested in exploring nonlinearity in time series, Nonlinear Time Series Analysis offers a comprehensive text that explores the advantages and limitations of the nonlinear models and methods and demonstrates the improvements upon linear time series models.
Book Synopsis Analysis of Financial Time Series by : Ruey S. Tsay
Download or read book Analysis of Financial Time Series written by Ruey S. Tsay and published by John Wiley & Sons. This book was released on 2010-10-26 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad, mature, and systematic introduction to current financial econometric models and their applications to modeling and prediction of financial time series data. It utilizes real-world examples and real financial data throughout the book to apply the models and methods described. The author begins with basic characteristics of financial time series data before covering three main topics: Analysis and application of univariate financial time series The return series of multiple assets Bayesian inference in finance methods Key features of the new edition include additional coverage of modern day topics such as arbitrage, pair trading, realized volatility, and credit risk modeling; a smooth transition from S-Plus to R; and expanded empirical financial data sets. The overall objective of the book is to provide some knowledge of financial time series, introduce some statistical tools useful for analyzing these series and gain experience in financial applications of various econometric methods.
Book Synopsis Analysis of Financial Time Series by : Ruey S. Tsay
Download or read book Analysis of Financial Time Series written by Ruey S. Tsay and published by John Wiley & Sons. This book was released on 2005-09-15 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides statistical tools and techniques needed to understandtoday's financial markets The Second Edition of this critically acclaimed text provides acomprehensive and systematic introduction to financial econometricmodels and their applications in modeling and predicting financialtime series data. This latest edition continues to emphasizeempirical financial data and focuses on real-world examples.Following this approach, readers will master key aspects offinancial time series, including volatility modeling, neuralnetwork applications, market microstructure and high-frequencyfinancial data, continuous-time models and Ito's Lemma, Value atRisk, multiple returns analysis, financial factor models, andeconometric modeling via computation-intensive methods. The author begins with the basic characteristics of financialtime series data, setting the foundation for the three maintopics: Analysis and application of univariate financial timeseries Return series of multiple assets Bayesian inference in finance methods This new edition is a thoroughly revised and updated text,including the addition of S-Plus® commands and illustrations.Exercises have been thoroughly updated and expanded and include themost current data, providing readers with more opportunities to putthe models and methods into practice. Among the new material addedto the text, readers will find: Consistent covariance estimation under heteroscedasticity andserial correlation Alternative approaches to volatility modeling Financial factor models State-space models Kalman filtering Estimation of stochastic diffusion models The tools provided in this text aid readers in developing adeeper understanding of financial markets through firsthandexperience in working with financial data. This is an idealtextbook for MBA students as well as a reference for researchersand professionals in business and finance.
Book Synopsis Non-Linear Time Series Models in Empirical Finance by : Philip Hans Franses
Download or read book Non-Linear Time Series Models in Empirical Finance written by Philip Hans Franses and published by Cambridge University Press. This book was released on 2000-07-27 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 2000 volume reviews non-linear time series models, and their applications to financial markets.
Book Synopsis An Introduction to High-Frequency Finance by : Ramazan Gençay
Download or read book An Introduction to High-Frequency Finance written by Ramazan Gençay and published by Elsevier. This book was released on 2001-05-29 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Liquid markets generate hundreds or thousands of ticks (the minimum change in price a security can have, either up or down) every business day. Data vendors such as Reuters transmit more than 275,000 prices per day for foreign exchange spot rates alone. Thus, high-frequency data can be a fundamental object of study, as traders make decisions by observing high-frequency or tick-by-tick data. Yet most studies published in financial literature deal with low frequency, regularly spaced data. For a variety of reasons, high-frequency data are becoming a way for understanding market microstructure. This book discusses the best mathematical models and tools for dealing with such vast amounts of data.This book provides a framework for the analysis, modeling, and inference of high frequency financial time series. With particular emphasis on foreign exchange markets, as well as currency, interest rate, and bond futures markets, this unified view of high frequency time series methods investigates the price formation process and concludes by reviewing techniques for constructing systematic trading models for financial assets.
Book Synopsis Essentials of Time Series for Financial Applications by : Massimo Guidolin
Download or read book Essentials of Time Series for Financial Applications written by Massimo Guidolin and published by Academic Press. This book was released on 2018-05-29 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: Essentials of Time Series for Financial Applications serves as an agile reference for upper level students and practitioners who desire a formal, easy-to-follow introduction to the most important time series methods applied in financial applications (pricing, asset management, quant strategies, and risk management). Real-life data and examples developed with EViews illustrate the links between the formal apparatus and the applications. The examples either directly exploit the tools that EViews makes available or use programs that by employing EViews implement specific topics or techniques. The book balances a formal framework with as few proofs as possible against many examples that support its central ideas. Boxes are used throughout to remind readers of technical aspects and definitions and to present examples in a compact fashion, with full details (workout files) available in an on-line appendix. The more advanced chapters provide discussion sections that refer to more advanced textbooks or detailed proofs. - Provides practical, hands-on examples in time-series econometrics - Presents a more application-oriented, less technical book on financial econometrics - Offers rigorous coverage, including technical aspects and references for the proofs, despite being an introduction - Features examples worked out in EViews (9 or higher)
Book Synopsis Elements of Nonlinear Time Series Analysis and Forecasting by : Jan G. De Gooijer
Download or read book Elements of Nonlinear Time Series Analysis and Forecasting written by Jan G. De Gooijer and published by Springer. This book was released on 2017-03-30 with total page 626 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an overview of the current state-of-the-art of nonlinear time series analysis, richly illustrated with examples, pseudocode algorithms and real-world applications. Avoiding a “theorem-proof” format, it shows concrete applications on a variety of empirical time series. The book can be used in graduate courses in nonlinear time series and at the same time also includes interesting material for more advanced readers. Though it is largely self-contained, readers require an understanding of basic linear time series concepts, Markov chains and Monte Carlo simulation methods. The book covers time-domain and frequency-domain methods for the analysis of both univariate and multivariate (vector) time series. It makes a clear distinction between parametric models on the one hand, and semi- and nonparametric models/methods on the other. This offers the reader the option of concentrating exclusively on one of these nonlinear time series analysis methods. To make the book as user friendly as possible, major supporting concepts and specialized tables are appended at the end of every chapter. In addition, each chapter concludes with a set of key terms and concepts, as well as a summary of the main findings. Lastly, the book offers numerous theoretical and empirical exercises, with answers provided by the author in an extensive solutions manual.
Book Synopsis Handbook of High-Frequency Trading and Modeling in Finance by : Ionut Florescu
Download or read book Handbook of High-Frequency Trading and Modeling in Finance written by Ionut Florescu and published by John Wiley & Sons. This book was released on 2016-04-05 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reflecting the fast pace and ever-evolving nature of the financial industry, the Handbook of High-Frequency Trading and Modeling in Finance details how high-frequency analysis presents new systematic approaches to implementing quantitative activities with high-frequency financial data. Introducing new and established mathematical foundations necessary to analyze realistic market models and scenarios, the handbook begins with a presentation of the dynamics and complexity of futures and derivatives markets as well as a portfolio optimization problem using quantum computers. Subsequently, the handbook addresses estimating complex model parameters using high-frequency data. Finally, the handbook focuses on the links between models used in financial markets and models used in other research areas such as geophysics, fossil records, and earthquake studies. The Handbook of High-Frequency Trading and Modeling in Finance also features: • Contributions by well-known experts within the academic, industrial, and regulatory fields • A well-structured outline on the various data analysis methodologies used to identify new trading opportunities • Newly emerging quantitative tools that address growing concerns relating to high-frequency data such as stochastic volatility and volatility tracking; stochastic jump processes for limit-order books and broader market indicators; and options markets • Practical applications using real-world data to help readers better understand the presented material The Handbook of High-Frequency Trading and Modeling in Finance is an excellent reference for professionals in the fields of business, applied statistics, econometrics, and financial engineering. The handbook is also a good supplement for graduate and MBA-level courses on quantitative finance, volatility, and financial econometrics. Ionut Florescu, PhD, is Research Associate Professor in Financial Engineering and Director of the Hanlon Financial Systems Laboratory at Stevens Institute of Technology. His research interests include stochastic volatility, stochastic partial differential equations, Monte Carlo Methods, and numerical methods for stochastic processes. Dr. Florescu is the author of Probability and Stochastic Processes, the coauthor of Handbook of Probability, and the coeditor of Handbook of Modeling High-Frequency Data in Finance, all published by Wiley. Maria C. Mariani, PhD, is Shigeko K. Chan Distinguished Professor in Mathematical Sciences and Chair of the Department of Mathematical Sciences at The University of Texas at El Paso. Her research interests include mathematical finance, applied mathematics, geophysics, nonlinear and stochastic partial differential equations and numerical methods. Dr. Mariani is the coeditor of Handbook of Modeling High-Frequency Data in Finance, also published by Wiley. H. Eugene Stanley, PhD, is William Fairfield Warren Distinguished Professor at Boston University. Stanley is one of the key founders of the new interdisciplinary field of econophysics, and has an ISI Hirsch index H=128 based on more than 1200 papers. In 2004 he was elected to the National Academy of Sciences. Frederi G. Viens, PhD, is Professor of Statistics and Mathematics and Director of the Computational Finance Program at Purdue University. He holds more than two dozen local, regional, and national awards and he travels extensively on a world-wide basis to deliver lectures on his research interests, which range from quantitative finance to climate science and agricultural economics. A Fellow of the Institute of Mathematics Statistics, Dr. Viens is the coeditor of Handbook of Modeling High-Frequency Data in Finance, also published by Wiley.
Book Synopsis Analysis of Financial Time Series by : Ruey S. Tsay
Download or read book Analysis of Financial Time Series written by Ruey S. Tsay and published by Wiley-Interscience. This book was released on 2001-11-01 with total page 472 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamental topics and new methods in time series analysis Analysis of Financial Time Series provides a comprehensive and systematic introduction to financial econometric models and their application to modeling and prediction of financial time series data. It utilizes real-world examples and real financial data throughout the book to apply the models and methods described. The author begins with basic characteristics of financial time series data before covering three main topics: analysis and application of univariate financial time series; the return series of multiple assets; and Bayesian inference in finance methods. Timely topics and recent results include: Value at Risk (VaR) High-frequency financial data analysis Markov Chain Monte Carlo (MCMC) methods Derivative pricing using jump diffusion with closed-form formulas VaR calculation using extreme value theory based on a non-homogeneous two-dimensional Poisson process Multivariate volatility models with time-varying correlations Ideal as a fundamental introduction to time series for MBA students or as a reference for researchers and practitioners in business and finance, Analysis of Financial Time Series offers an in-depth and up-to-date account of these vital methods.
Book Synopsis Non-linear Time Series by : Howell Tong
Download or read book Non-linear Time Series written by Howell Tong and published by Oxford University Press, USA. This book was released on 1990 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by an internationally recognized expert in the field, this book provides a valuable introduction to the rapidly growing area of non-linear time series. Because developments in the study of dynamical systems have motivated many of the advances discussed here, the author's coverage includes such fundamental concepts of dynamical systems theory as limit cycles, Lyapunov functions, thresholds, and stability, with detailed descriptions of their role in the analysis of non-linear time series data. As the first accessible and comprehensive account of these exciting new developments, this unique volume bridges the gap between linear and chaotic time series analysis. Both statisticians and dynamical systems theorists will value its survey of recent developments and the present state of research, as well as the discussion of a number of unsolved problems in the field.
Book Synopsis Emerging Capabilities and Applications of Artificial Higher Order Neural Networks by : Zhang, Ming
Download or read book Emerging Capabilities and Applications of Artificial Higher Order Neural Networks written by Zhang, Ming and published by IGI Global. This book was released on 2021-02-05 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial neural network research is one of the new directions for new generation computers. Current research suggests that open box artificial higher order neural networks (HONNs) play an important role in this new direction. HONNs will challenge traditional artificial neural network products and change the research methodology that people are currently using in control and recognition areas for the control signal generating, pattern recognition, nonlinear recognition, classification, and prediction. Since HONNs are open box models, they can be easily accepted and used by individuals working in information science, information technology, management, economics, and business fields. Emerging Capabilities and Applications of Artificial Higher Order Neural Networks contains innovative research on how to use HONNs in control and recognition areas and explains why HONNs can approximate any nonlinear data to any degree of accuracy, their ease of use, and how they can have better nonlinear data recognition accuracy than SAS nonlinear procedures. Featuring coverage on a broad range of topics such as nonlinear regression, pattern recognition, and data prediction, this book is ideally designed for data analysists, IT specialists, engineers, researchers, academics, students, and professionals working in the fields of economics, business, modeling, simulation, control, recognition, computer science, and engineering research.
Book Synopsis Analysis of Financial Time Series by : Ruey S. Tsay
Download or read book Analysis of Financial Time Series written by Ruey S. Tsay and published by John Wiley & Sons. This book was released on 2010-08-30 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad, mature, and systematic introduction to current financial econometric models and their applications to modeling and prediction of financial time series data. It utilizes real-world examples and real financial data throughout the book to apply the models and methods described. The author begins with basic characteristics of financial time series data before covering three main topics: Analysis and application of univariate financial time series The return series of multiple assets Bayesian inference in finance methods Key features of the new edition include additional coverage of modern day topics such as arbitrage, pair trading, realized volatility, and credit risk modeling; a smooth transition from S-Plus to R; and expanded empirical financial data sets. The overall objective of the book is to provide some knowledge of financial time series, introduce some statistical tools useful for analyzing these series and gain experience in financial applications of various econometric methods.