Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces

Download Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces PDF Online Free

Author :
Publisher :
ISBN 13 : 9781470455132
Total Pages : 121 pages
Book Rating : 4.4/5 (551 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces by : Luigi Ambrosio

Download or read book Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces written by Luigi Ambrosio and published by . This book was released on 2019 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aim of this paper is to provide new characterizations of the curvature dimension condition in the context of metric measure spaces (X,d,m). On the geometric side, our new approach takes into account suitable weighted action functionals which provide the natural modulus of K-convexity when one investigates the convexity properties of N-dimensional entropies. On the side of diffusion semigroups and evolution variational inequalities, our new approach uses the nonlinear diffusion semigroup induced by the N-dimensional entropy, in place of the heat flow. Under suitable assumptions (most notably the quadraticity of Cheeger's energy relative to the metric measure structure) both approaches are shown to be equivalent to the strong CD*(K,N) condition of Bacher-Sturm.

Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces

Download Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470439131
Total Pages : 134 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces by : Luigi Ambrosio

Download or read book Nonlinear Diffusion Equations and Curvature Conditions in Metric Measure Spaces written by Luigi Ambrosio and published by American Mathematical Soc.. This book was released on 2020-02-13 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this paper is to provide new characterizations of the curvature dimension condition in the context of metric measure spaces (X,d,m). On the geometric side, the authors' new approach takes into account suitable weighted action functionals which provide the natural modulus of K-convexity when one investigates the convexity properties of N-dimensional entropies. On the side of diffusion semigroups and evolution variational inequalities, the authors' new approach uses the nonlinear diffusion semigroup induced by the N-dimensional entropy, in place of the heat flow. Under suitable assumptions (most notably the quadraticity of Cheeger's energy relative to the metric measure structure) both approaches are shown to be equivalent to the strong CD∗(K,N) condition of Bacher-Sturm.

New Trends on Analysis and Geometry in Metric Spaces

Download New Trends on Analysis and Geometry in Metric Spaces PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030841413
Total Pages : 312 pages
Book Rating : 4.0/5 (38 download)

DOWNLOAD NOW!


Book Synopsis New Trends on Analysis and Geometry in Metric Spaces by : Fabrice Baudoin

Download or read book New Trends on Analysis and Geometry in Metric Spaces written by Fabrice Baudoin and published by Springer Nature. This book was released on 2022-02-04 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes four courses on geometric measure theory, the calculus of variations, partial differential equations, and differential geometry. Authored by leading experts in their fields, the lectures present different approaches to research topics with the common background of a relevant underlying, usually non-Riemannian, geometric structure. In particular, the topics covered concern differentiation and functions of bounded variation in metric spaces, Sobolev spaces, and differential geometry in the so-called Carnot–Carathéodory spaces. The text is based on lectures presented at the 10th School on "Analysis and Geometry in Metric Spaces" held in Levico Terme (TN), Italy, in collaboration with the University of Trento, Fondazione Bruno Kessler and CIME, Italy. The book is addressed to both graduate students and researchers.

Lectures on Nonsmooth Differential Geometry

Download Lectures on Nonsmooth Differential Geometry PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030386139
Total Pages : 212 pages
Book Rating : 4.0/5 (33 download)

DOWNLOAD NOW!


Book Synopsis Lectures on Nonsmooth Differential Geometry by : Nicola Gigli

Download or read book Lectures on Nonsmooth Differential Geometry written by Nicola Gigli and published by Springer Nature. This book was released on 2020-02-10 with total page 212 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to some aspects of the flourishing field of nonsmooth geometric analysis. In particular, a quite detailed account of the first-order structure of general metric measure spaces is presented, and the reader is introduced to the second-order calculus on spaces – known as RCD spaces – satisfying a synthetic lower Ricci curvature bound. Examples of the main topics covered include notions of Sobolev space on abstract metric measure spaces; normed modules, which constitute a convenient technical tool for the introduction of a robust differential structure in the nonsmooth setting; first-order differential operators and the corresponding functional spaces; the theory of heat flow and its regularizing properties, within the general framework of “infinitesimally Hilbertian” metric measure spaces; the RCD condition and its effects on the behavior of heat flow; and second-order calculus on RCD spaces. The book is mainly intended for young researchers seeking a comprehensive and fairly self-contained introduction to this active research field. The only prerequisites are a basic knowledge of functional analysis, measure theory, and Riemannian geometry.

Recent Advances in Alexandrov Geometry

Download Recent Advances in Alexandrov Geometry PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030992985
Total Pages : 119 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Recent Advances in Alexandrov Geometry by : Gerardo Arizmendi Echegaray

Download or read book Recent Advances in Alexandrov Geometry written by Gerardo Arizmendi Echegaray and published by Springer Nature. This book was released on 2022-10-27 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is devoted to various aspects of Alexandrov Geometry for those wishing to get a detailed picture of the advances in the field. It contains enhanced versions of the lecture notes of the two mini-courses plus those of one research talk given at CIMAT. Peter Petersen’s part aims at presenting various rigidity results about Alexandrov spaces in a way that facilitates the understanding by a larger audience of geometers of some of the current research in the subject. They contain a brief overview of the fundamental aspects of the theory of Alexandrov spaces with lower curvature bounds, as well as the aforementioned rigidity results with complete proofs. The text from Fernando Galaz-García’s minicourse was completed in collaboration with Jesús Nuñez-Zimbrón. It presents an up-to-date and panoramic view of the topology and geometry of 3-dimensional Alexandrov spaces, including the classification of positively and non-negatively curved spaces and the geometrization theorem. They also present Lie group actions and their topological and equivariant classifications as well as a brief account of results on collapsing Alexandrov spaces. Jesús Nuñez-Zimbrón’s contribution surveys two recent developments in the understanding of the topological and geometric rigidity of singular spaces with curvature bounded below.

Geometric Optics for Surface Waves in Nonlinear Elasticity

Download Geometric Optics for Surface Waves in Nonlinear Elasticity PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470440377
Total Pages : 164 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Geometric Optics for Surface Waves in Nonlinear Elasticity by : Jean-François Coulombel

Download or read book Geometric Optics for Surface Waves in Nonlinear Elasticity written by Jean-François Coulombel and published by American Mathematical Soc.. This book was released on 2020-04-03 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work is devoted to the analysis of high frequency solutions to the equations of nonlinear elasticity in a half-space. The authors consider surface waves (or more precisely, Rayleigh waves) arising in the general class of isotropic hyperelastic models, which includes in particular the Saint Venant-Kirchhoff system. Work has been done by a number of authors since the 1980s on the formulation and well-posedness of a nonlinear evolution equation whose (exact) solution gives the leading term of an approximate Rayleigh wave solution to the underlying elasticity equations. This evolution equation, which is referred to as “the amplitude equation”, is an integrodifferential equation of nonlocal Burgers type. The authors begin by reviewing and providing some extensions of the theory of the amplitude equation. The remainder of the paper is devoted to a rigorous proof in 2D that exact, highly oscillatory, Rayleigh wave solutions uε to the nonlinear elasticity equations exist on a fixed time interval independent of the wavelength ε, and that the approximate Rayleigh wave solution provided by the analysis of the amplitude equation is indeed close in a precise sense to uε on a time interval independent of ε. This paper focuses mainly on the case of Rayleigh waves that are pulses, which have profiles with continuous Fourier spectrum, but the authors' method applies equally well to the case of wavetrains, whose Fourier spectrum is discrete.

Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on R

Download Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on R PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470441128
Total Pages : 100 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on R by : Peter Poláčik

Download or read book Propagating Terraces and the Dynamics of Front-Like Solutions of Reaction-Diffusion Equations on R written by Peter Poláčik and published by American Mathematical Soc.. This book was released on 2020-05-13 with total page 100 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author considers semilinear parabolic equations of the form ut=uxx+f(u),x∈R,t>0, where f a C1 function. Assuming that 0 and γ>0 are constant steady states, the author investigates the large-time behavior of the front-like solutions, that is, solutions u whose initial values u(x,0) are near γ for x≈−∞ and near 0 for x≈∞. If the steady states 0 and γ are both stable, the main theorem shows that at large times, the graph of u(⋅,t) is arbitrarily close to a propagating terrace (a system of stacked traveling fonts). The author proves this result without requiring monotonicity of u(⋅,0) or the nondegeneracy of zeros of f. The case when one or both of the steady states 0, γ is unstable is considered as well. As a corollary to the author's theorems, he shows that all front-like solutions are quasiconvergent: their ω-limit sets with respect to the locally uniform convergence consist of steady states. In the author's proofs he employs phase plane analysis, intersection comparison (or, zero number) arguments, and a geometric method involving the spatial trajectories {(u(x,t),ux(x,t)):x∈R}, t>0, of the solutions in question.

Global Smooth Solutions for the Inviscid SQG Equation

Download Global Smooth Solutions for the Inviscid SQG Equation PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470442140
Total Pages : 89 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Global Smooth Solutions for the Inviscid SQG Equation by : Angel Castro

Download or read book Global Smooth Solutions for the Inviscid SQG Equation written by Angel Castro and published by American Mathematical Soc.. This book was released on 2020-09-28 with total page 89 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this paper, the authors show the existence of the first non trivial family of classical global solutions of the inviscid surface quasi-geostrophic equation.

New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in Rn

Download New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in Rn PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470441616
Total Pages : 90 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in Rn by : Antonio Alarcón

Download or read book New Complex Analytic Methods in the Study of Non-Orientable Minimal Surfaces in Rn written by Antonio Alarcón and published by American Mathematical Soc.. This book was released on 2020-05-13 with total page 90 pages. Available in PDF, EPUB and Kindle. Book excerpt: All the new tools mentioned above apply to non-orientable minimal surfaces endowed with a fixed choice of a conformal structure. This enables the authors to obtain significant new applications to the global theory of non-orientable minimal surfaces. In particular, they construct proper non-orientable conformal minimal surfaces in Rn with any given conformal structure, complete non-orientable minimal surfaces in Rn with arbitrary conformal type whose generalized Gauss map is nondegenerate and omits n hyperplanes of CPn−1 in general position, complete non-orientable minimal surfaces bounded by Jordan curves, and complete proper non-orientable minimal surfaces normalized by bordered surfaces in p-convex domains of Rn.

Explicit Arithmetic of Jacobians of Generalized Legendre Curves Over Global Function Fields

Download Explicit Arithmetic of Jacobians of Generalized Legendre Curves Over Global Function Fields PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470442191
Total Pages : 131 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Explicit Arithmetic of Jacobians of Generalized Legendre Curves Over Global Function Fields by : Lisa Berger

Download or read book Explicit Arithmetic of Jacobians of Generalized Legendre Curves Over Global Function Fields written by Lisa Berger and published by American Mathematical Soc.. This book was released on 2020-09-28 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors study the Jacobian $J$ of the smooth projective curve $C$ of genus $r-1$ with affine model $y^r = x^r-1(x + 1)(x + t)$ over the function field $mathbb F_p(t)$, when $p$ is prime and $rge 2$ is an integer prime to $p$. When $q$ is a power of $p$ and $d$ is a positive integer, the authors compute the $L$-function of $J$ over $mathbb F_q(t^1/d)$ and show that the Birch and Swinnerton-Dyer conjecture holds for $J$ over $mathbb F_q(t^1/d)$.

Dynamics Near the Subcritical Transition of the 3D Couette Flow I: Below Threshold Case

Download Dynamics Near the Subcritical Transition of the 3D Couette Flow I: Below Threshold Case PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470442175
Total Pages : 154 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Dynamics Near the Subcritical Transition of the 3D Couette Flow I: Below Threshold Case by : Jacob Bedrossian

Download or read book Dynamics Near the Subcritical Transition of the 3D Couette Flow I: Below Threshold Case written by Jacob Bedrossian and published by American Mathematical Soc.. This book was released on 2020-09-28 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors study small disturbances to the periodic, plane Couette flow in the 3D incompressible Navier-Stokes equations at high Reynolds number Re. They prove that for sufficiently regular initial data of size $epsilon leq c_0mathbf {Re}^-1$ for some universal $c_0 > 0$, the solution is global, remains within $O(c_0)$ of the Couette flow in $L^2$, and returns to the Couette flow as $t rightarrow infty $. For times $t gtrsim mathbf {Re}^1/3$, the streamwise dependence is damped by a mixing-enhanced dissipation effect and the solution is rapidly attracted to the class of ``2.5 dimensional'' streamwise-independent solutions referred to as streaks.

The Riesz Transform of Codimension Smaller Than One and the Wolff Energy

Download The Riesz Transform of Codimension Smaller Than One and the Wolff Energy PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470442132
Total Pages : 97 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis The Riesz Transform of Codimension Smaller Than One and the Wolff Energy by : Benjamin Jaye

Download or read book The Riesz Transform of Codimension Smaller Than One and the Wolff Energy written by Benjamin Jaye and published by American Mathematical Soc.. This book was released on 2020-09-28 with total page 97 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fix $dgeq 2$, and $sin (d-1,d)$. The authors characterize the non-negative locally finite non-atomic Borel measures $mu $ in $mathbb R^d$ for which the associated $s$-Riesz transform is bounded in $L^2(mu )$ in terms of the Wolff energy. This extends the range of $s$ in which the Mateu-Prat-Verdera characterization of measures with bounded $s$-Riesz transform is known. As an application, the authors give a metric characterization of the removable sets for locally Lipschitz continuous solutions of the fractional Laplacian operator $(-Delta )^alpha /2$, $alpha in (1,2)$, in terms of a well-known capacity from non-linear potential theory. This result contrasts sharply with removability results for Lipschitz harmonic functions.

Conformal Graph Directed Markov Systems on Carnot Groups

Download Conformal Graph Directed Markov Systems on Carnot Groups PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470442159
Total Pages : 153 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Conformal Graph Directed Markov Systems on Carnot Groups by : Vasileios Chousionis

Download or read book Conformal Graph Directed Markov Systems on Carnot Groups written by Vasileios Chousionis and published by American Mathematical Soc.. This book was released on 2020-09-28 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors develop a comprehensive theory of conformal graph directed Markov systems in the non-Riemannian setting of Carnot groups equipped with a sub-Riemannian metric. In particular, they develop the thermodynamic formalism and show that, under natural hypotheses, the limit set of an Carnot conformal GDMS has Hausdorff dimension given by Bowen's parameter. They illustrate their results for a variety of examples of both linear and nonlinear iterated function systems and graph directed Markov systems in such sub-Riemannian spaces. These include the Heisenberg continued fractions introduced by Lukyanenko and Vandehey as well as Kleinian and Schottky groups associated to the non-real classical rank one hyperbolic spaces.

Filtrations and Buildings

Download Filtrations and Buildings PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470442213
Total Pages : 150 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Filtrations and Buildings by : Christophe Cornut

Download or read book Filtrations and Buildings written by Christophe Cornut and published by American Mathematical Soc.. This book was released on 2020-09-28 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author constructs and studies a scheme theoretical version of the Tits vectorial building, relates it to filtrations on fiber functors, and uses them to clarify various constructions pertaining to affine Bruhat-Tits buildings, for which he also provides a Tannakian description.

The Mother Body Phase Transition in the Normal Matrix Model

Download The Mother Body Phase Transition in the Normal Matrix Model PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470441845
Total Pages : 144 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis The Mother Body Phase Transition in the Normal Matrix Model by : Pavel M. Bleher

Download or read book The Mother Body Phase Transition in the Normal Matrix Model written by Pavel M. Bleher and published by American Mathematical Soc.. This book was released on 2020-09-28 with total page 144 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this present paper, the authors consider the normal matrix model with cubic plus linear potential.

Affine Flag Varieties and Quantum Symmetric Pairs

Download Affine Flag Varieties and Quantum Symmetric Pairs PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470441756
Total Pages : 123 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Affine Flag Varieties and Quantum Symmetric Pairs by : Zhaobing Fan

Download or read book Affine Flag Varieties and Quantum Symmetric Pairs written by Zhaobing Fan and published by American Mathematical Soc.. This book was released on 2020-09-28 with total page 123 pages. Available in PDF, EPUB and Kindle. Book excerpt: The quantum groups of finite and affine type $A$ admit geometric realizations in terms of partial flag varieties of finite and affine type $A$. Recently, the quantum group associated to partial flag varieties of finite type $B/C$ is shown to be a coideal subalgebra of the quantum group of finite type $A$.

Degree Theory of Immersed Hypersurfaces

Download Degree Theory of Immersed Hypersurfaces PDF Online Free

Author :
Publisher : American Mathematical Soc.
ISBN 13 : 1470441853
Total Pages : 62 pages
Book Rating : 4.4/5 (74 download)

DOWNLOAD NOW!


Book Synopsis Degree Theory of Immersed Hypersurfaces by : Harold Rosenberg

Download or read book Degree Theory of Immersed Hypersurfaces written by Harold Rosenberg and published by American Mathematical Soc.. This book was released on 2020-09-28 with total page 62 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors develop a degree theory for compact immersed hypersurfaces of prescribed $K$-curvature immersed in a compact, orientable Riemannian manifold, where $K$ is any elliptic curvature function.