Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Non Perturbative Quantum Field Theory Mathematical Aspects And Applications
Download Non Perturbative Quantum Field Theory Mathematical Aspects And Applications full books in PDF, epub, and Kindle. Read online Non Perturbative Quantum Field Theory Mathematical Aspects And Applications ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Non-perturbative Quantum Field Theory by : Jürg Fröhlich
Download or read book Non-perturbative Quantum Field Theory written by Jürg Fröhlich and published by World Scientific Publishing Company Incorporated. This book was released on 1992 with total page 841 pages. Available in PDF, EPUB and Kindle. Book excerpt: A collection of 22 reprints of Frohlich's articles on non-perturbative aspects of quantum field theory, more than half of them of a review character, on topics in phase transitions and continuous symmetry breaking; non-perturbative quantization of topological solitons; gauge theories, including (the infrared problem in) quantum electrodynamics; random geometry (quantum gravity and strings); and low-dimensional QFT--two-dimensional conformal field theory, three-dimensional (gauge) theories. No index. Paper edition (unseen), $48. Annotation copyrighted by Book News, Inc., Portland, OR
Book Synopsis Non-perturbative Quantum Field Theory: Mathematical Aspects And Applications by : Jurg Frohlich
Download or read book Non-perturbative Quantum Field Theory: Mathematical Aspects And Applications written by Jurg Frohlich and published by World Scientific. This book was released on 1992-04-29 with total page 855 pages. Available in PDF, EPUB and Kindle. Book excerpt: Compiled to illustrate the recent history of Quantum Field Theory and its trends, this collection of selected reprints by Jürg Fröhlich, a leading theoretician in the field, is a comprehensive guide of the more mathematical aspects of the subject. Results and methods of the past fifteen years are reviewed. The analytical methods employed are non-perturbative and, for the larger part, mathematically rigorous. Most articles are review articles surveying certain important developments in quantum field theory and guiding the reader towards the original literature.The volume begins with a comprehensive introduction by Jürg Fröhlich.The theory of phase transitions and continuous symmetry breaking is reviewed in the first section. The second section discusses the non-perturbative quantization of topological solitons. The third section is devoted to the study of gauge fields. A paper on the triviality of λϖ4 — theory in four and more dimensions is found in the fourth section, while the fifth contains two articles on “random geometry”. The sixth and final part addresses topics in low-dimensional quantum field theory, including braid statistics, two-dimensional conformal field theory and an application to condensed matter theory.
Book Synopsis Non-Perturbative Field Theory by : Yitzhak Frishman
Download or read book Non-Perturbative Field Theory written by Yitzhak Frishman and published by Cambridge University Press. This book was released on 2010-04-08 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a new perspective on quantum field theory, this book is useful for graduate students and researchers within and outside the field. It describes non-perturbative methods, and explores two-dimensional and four-dimensional gauge dynamics using those methods. Applications are thoroughly described.
Book Synopsis Nonperturbative Quantum Field Theory by : G. Hooft
Download or read book Nonperturbative Quantum Field Theory written by G. Hooft and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 603 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the past 15 years, quantum field theory and classical statistical mechanics have merged into a single field, and the need for nonperturbative methods for the description of critical phenomena in statistical mechanics as well as for problems in elementary particle physics are generally acknowledged. Such methods formed the central theme of the 1987 Cargese Advanced Study Institut. e on "Nonpert. urbat. ive Quantum Field Theory." The use of conformal symmet. ry has been of central interest in recent years, and was a main subject at. t. he ASI. Conformal invariant quantum field theory describes statistical mechanical systems exactly at a critical point, and can be analysed to a remarkable ext. ent. by group t. heoretical methods. Very strong results have been obtained for 2-dimensional systems. Conformal field theory is also the basis of string theory, which offers some hope of providing a unified t. heory of all interactions between elementary particles. Accordingly, a number of lectures and seminars were presented on these two topics. After syst. ematic introductory lectures, conformal field theory on Riemann surfaces, orbifolds, sigma models, and application of loop group theory and Grassmannians were discussed, and some ideas on modular geometry were presented. Other lectures combined' traditional techniques of constructive quant. um field theory with new methods such as the use of index-t. heorems and infinite dimensional (Kac Moody) symmetry groups. The problems encountered in a quantum mechanical description of black holes were discussed in detail.
Book Synopsis Mathematical Aspects of Quantum Field Theory by : Edson de Faria
Download or read book Mathematical Aspects of Quantum Field Theory written by Edson de Faria and published by Cambridge University Press. This book was released on 2010-08-12 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the last century quantum field theory has made a significant impact on the formulation and solution of mathematical problems and inspired powerful advances in pure mathematics. However, most accounts are written by physicists, and mathematicians struggle to find clear definitions and statements of the concepts involved. This graduate-level introduction presents the basic ideas and tools from quantum field theory to a mathematical audience. Topics include classical and quantum mechanics, classical field theory, quantization of classical fields, perturbative quantum field theory, renormalization, and the standard model. The material is also accessible to physicists seeking a better understanding of the mathematical background, providing the necessary tools from differential geometry on such topics as connections and gauge fields, vector and spinor bundles, symmetries and group representations.
Book Synopsis An Introduction to the Mathematical Structure of Quantum Mechanics by : F. Strocchi
Download or read book An Introduction to the Mathematical Structure of Quantum Mechanics written by F. Strocchi and published by World Scientific. This book was released on 2008 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: Arising out of the need for Quantum Mechanics (QM) to be part of the common education of mathematics students, this book formulates the mathematical structure of QM in terms of the C*-algebra of observables, which is argued on the basis of the operational definition of measurements and the duality between states and observables.
Book Synopsis Non-perturbative Description of Quantum Systems by : Ilya Feranchuk
Download or read book Non-perturbative Description of Quantum Systems written by Ilya Feranchuk and published by Springer. This book was released on 2014-12-18 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces systematically the operator method for the solution of the Schrödinger equation. This method permits to describe the states of quantum systems in the entire range of parameters of Hamiltonian with a predefined accuracy. The operator method is unique compared with other non-perturbative methods due to its ability to deliver in zeroth approximation the uniformly suitable estimate for both ground and excited states of quantum system. The method has been generalized for the application to quantum statistics and quantum field theory. In this book, the numerous applications of operator method for various physical systems are demonstrated. Simple models are used to illustrate the basic principles of the method which are further used for the solution of complex problems of quantum theory for many-particle systems. The results obtained are supplemented by numerical calculations, presented as tables and figures.
Book Synopsis Structural Aspects Of Quantum Field Theory And Noncommutative Geometry (Second Edition) (In 2 Volumes) by : Gerhard Grensing
Download or read book Structural Aspects Of Quantum Field Theory And Noncommutative Geometry (Second Edition) (In 2 Volumes) written by Gerhard Grensing and published by World Scientific. This book was released on 2021-07-15 with total page 1656 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the subject of quantum field theory. It is divided into two volumes. The first volume can serve as a textbook on main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation.The second edition is extended by additional material, mostly concerning the impact of noncommutative geometry on theories beyond the standard model of particle physics, especially the possible role of torsion in the context of the dark matter problem. Furthermore, the text includes a discussion of the Randall-Sundrum model and the Seiberg-Witten equations.
Book Synopsis Advanced Topics in Quantum Mechanics by : Marcos Mariño
Download or read book Advanced Topics in Quantum Mechanics written by Marcos Mariño and published by Cambridge University Press. This book was released on 2021-12-09 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum mechanics is one of the most successful theories in science, and is relevant to nearly all modern topics of scientific research. This textbook moves beyond the introductory and intermediate principles of quantum mechanics frequently covered in undergraduate and graduate courses, presenting in-depth coverage of many more exciting and advanced topics. The author provides a clearly structured text for advanced students, graduates and researchers looking to deepen their knowledge of theoretical quantum mechanics. The book opens with a brief introduction covering key concepts and mathematical tools, followed by a detailed description of the Wentzel–Kramers–Brillouin (WKB) method. Two alternative formulations of quantum mechanics are then presented: Wigner's phase space formulation and Feynman's path integral formulation. The text concludes with a chapter examining metastable states and resonances. Step-by-step derivations, worked examples and physical applications are included throughout.
Book Synopsis Quantum Field Theory for Mathematicians by : Robin Ticciati
Download or read book Quantum Field Theory for Mathematicians written by Robin Ticciati and published by Cambridge University Press. This book was released on 1999-06-13 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: This should be a useful reference for anybody with an interest in quantum theory.
Book Synopsis Quantum Non-linear Sigma-Models by : Sergei V. Ketov
Download or read book Quantum Non-linear Sigma-Models written by Sergei V. Ketov and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 429 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first comprehensive presentation of the quantum non-linear sigma-models. The original papers consider in detail geometrical properties and renormalization of a generic non-linear sigma-model, illustrated by explicit multi-loop calculations in perturbation theory.
Book Synopsis Contact Interactions in Quantum Mechanics: Theory, Mathematical Aspects and Applications by : Manuel Gadella
Download or read book Contact Interactions in Quantum Mechanics: Theory, Mathematical Aspects and Applications written by Manuel Gadella and published by Frontiers Media SA. This book was released on 2021-03-12 with total page 182 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Selected Topics on the General Properties of Quantum Field Theory by : F. Strocchi
Download or read book Selected Topics on the General Properties of Quantum Field Theory written by F. Strocchi and published by World Scientific. This book was released on 1993 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a readable account of the foundations of QFT, in particular of the Euclidean formulation with emphasis on the interplay between physical requirements and mathematical structures. The general structures underlying the conventional local (renormalizable) formulation of gauge QFT are discussed also on the basis of simple models. The mechanism of confinement, non-trivial topology and ?-vacua, chiral symmetry breaking and solution of the U(1) problem are clarified through a careful analysis of the Schwinger model, which settles unclear or debated points.
Book Synopsis Form Factors In Completely Integrable Models Of Quantum Field Theory by : F A Smirnov
Download or read book Form Factors In Completely Integrable Models Of Quantum Field Theory written by F A Smirnov and published by World Scientific. This book was released on 1992-08-07 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: The monograph summarizes recent achievements in the calculation of matrix elements of local operators (form factors) for completely integrable models. Particularly, it deals with sine-Gordon, chiral Gross-Neven and O(3) nonlinear s models. General requirements on form factors are formulated and explicit formulas for form factors of most fundamental local operators are presented for the above mentioned models.
Book Synopsis Quantum Field Theory II: Quantum Electrodynamics by : Eberhard Zeidler
Download or read book Quantum Field Theory II: Quantum Electrodynamics written by Eberhard Zeidler and published by Springer Science & Business Media. This book was released on 2008-09-03 with total page 1125 pages. Available in PDF, EPUB and Kindle. Book excerpt: And God said, Let there be light; and there was light. Genesis 1,3 Light is not only the basis of our biological existence, but also an essential source of our knowledge about the physical laws of nature, ranging from the seventeenth century geometrical optics up to the twentieth century theory of general relativity and quantum electrodynamics. Folklore Don’t give us numbers: give us insight! A contemporary natural scientist to a mathematician The present book is the second volume of a comprehensive introduction to themathematicalandphysicalaspectsofmodernquantum?eldtheorywhich comprehends the following six volumes: Volume I: Basics in Mathematics and Physics Volume II: Quantum Electrodynamics Volume III: Gauge Theory Volume IV: Quantum Mathematics Volume V: The Physics of the Standard Model Volume VI: Quantum Gravitation and String Theory. It is our goal to build a bridge between mathematicians and physicists based on the challenging question about the fundamental forces in • macrocosmos (the universe) and • microcosmos (the world of elementary particles). The six volumes address a broad audience of readers, including both und- graduate and graduate students, as well as experienced scientists who want to become familiar with quantum ?eld theory, which is a fascinating topic in modern mathematics and physics.
Book Synopsis Noncommutative Geometry, Quantum Fields and Motives by : Alain Connes
Download or read book Noncommutative Geometry, Quantum Fields and Motives written by Alain Connes and published by American Mathematical Soc.. This book was released on 2019-03-13 with total page 810 pages. Available in PDF, EPUB and Kindle. Book excerpt: The unifying theme of this book is the interplay among noncommutative geometry, physics, and number theory. The two main objects of investigation are spaces where both the noncommutative and the motivic aspects come to play a role: space-time, where the guiding principle is the problem of developing a quantum theory of gravity, and the space of primes, where one can regard the Riemann Hypothesis as a long-standing problem motivating the development of new geometric tools. The book stresses the relevance of noncommutative geometry in dealing with these two spaces. The first part of the book deals with quantum field theory and the geometric structure of renormalization as a Riemann-Hilbert correspondence. It also presents a model of elementary particle physics based on noncommutative geometry. The main result is a complete derivation of the full Standard Model Lagrangian from a very simple mathematical input. Other topics covered in the first part of the book are a noncommutative geometry model of dimensional regularization and its role in anomaly computations, and a brief introduction to motives and their conjectural relation to quantum field theory. The second part of the book gives an interpretation of the Weil explicit formula as a trace formula and a spectral realization of the zeros of the Riemann zeta function. This is based on the noncommutative geometry of the adèle class space, which is also described as the space of commensurability classes of Q-lattices, and is dual to a noncommutative motive (endomotive) whose cyclic homology provides a general setting for spectral realizations of zeros of L-functions. The quantum statistical mechanics of the space of Q-lattices, in one and two dimensions, exhibits spontaneous symmetry breaking. In the low-temperature regime, the equilibrium states of the corresponding systems are related to points of classical moduli spaces and the symmetries to the class field theory of the field of rational numbers and of imaginary quadratic fields, as well as to the automorphisms of the field of modular functions. The book ends with a set of analogies between the noncommutative geometries underlying the mathematical formulation of the Standard Model minimally coupled to gravity and the moduli spaces of Q-lattices used in the study of the zeta function.
Book Synopsis Quantum Field Theory I: Basics in Mathematics and Physics by : Eberhard Zeidler
Download or read book Quantum Field Theory I: Basics in Mathematics and Physics written by Eberhard Zeidler and published by Springer Science & Business Media. This book was released on 2007-04-18 with total page 1060 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics.