Functional Materials For Next-generation Rechargeable Batteries

Download Functional Materials For Next-generation Rechargeable Batteries PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9811230684
Total Pages : 229 pages
Book Rating : 4.8/5 (112 download)

DOWNLOAD NOW!


Book Synopsis Functional Materials For Next-generation Rechargeable Batteries by : Jiangfeng Ni

Download or read book Functional Materials For Next-generation Rechargeable Batteries written by Jiangfeng Ni and published by World Scientific. This book was released on 2021-02-10 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over-consumption of fossil fuels has caused deficiency of limited resources and environmental pollution. Hence, deployment and utilization of renewable energy become an urgent need. The development of next-generation rechargeable batteries that store more energy and last longer has been significantly driven by the utilization of renewable energy.This book starts with principles and fundamentals of lithium rechargeable batteries, followed by their designs and assembly. The book then focuses on the recent progress in the development of advanced functional materials, as both cathode and anode, for next-generation rechargeable batteries such as lithium-sulfur, sodium-ion, and zinc-ion batteries. One of the special features of this book is that both inorganic electrode materials and organic materials are included to meet the requirement of high energy density and high safety of future rechargeable batteries. In addition to traditional non-aqueous rechargeable batteries, detailed information and discussion on aqueous batteries and solid-state batteries are also provided.

Sodium-Ion Batteries

Download Sodium-Ion Batteries PDF Online Free

Author :
Publisher : Materials Research Forum LLC
ISBN 13 : 1644900831
Total Pages : 278 pages
Book Rating : 4.6/5 (449 download)

DOWNLOAD NOW!


Book Synopsis Sodium-Ion Batteries by : Inamuddin

Download or read book Sodium-Ion Batteries written by Inamuddin and published by Materials Research Forum LLC. This book was released on 2020-07-05 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sodium-ion batteries are likely to be the next-generation power sources. They offer higher safety than lithium-ion batteries and, most important, sodium is available in unlimited abundance. The book covers the fundamental principles and applications of sodium-ion batteries and reports experimental work on the use of electrolytes and different electrode materials, such as silicon, carbon, conducting polymers, and Mn- and Sn-based materials. Also discussed are state-of-the-art, future prospects and challenges in sodium-ion battery technology. Keywords: Sodium-Ion Batteries, Lithium-Ion Batteries, Carbon Nanofibers, Conducting Polymers, Electrode Materials, Electrolytes, Graphene, Carbon Anodes, Magnetic Nanomaterials, Mn-based Materials, Sn-based Materials, Na-O2 Batteries, NASICON Electrodes, Organic Electrodes, Polyacetylene, Polyaniline, Polyphenylene, Redox Mediators, Reversible Capacity, Singlet Oxygen, Superoxide Stability.

Next-generation Electrode Materials for Na- and Li-ion Batteries

Download Next-generation Electrode Materials for Na- and Li-ion Batteries PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 203 pages
Book Rating : 4.:/5 (13 download)

DOWNLOAD NOW!


Book Synopsis Next-generation Electrode Materials for Na- and Li-ion Batteries by : Danielle Butts

Download or read book Next-generation Electrode Materials for Na- and Li-ion Batteries written by Danielle Butts and published by . This book was released on 2022 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: With climate change upon us, the development of energy storage technologies to increase the integration of renewable energy systems is critical. Thus, a variety of energy storage systems are required to meet the wide array of demands from grid-level storage to high-power, fast-charging electric vehicles. This dissertation presents the introduction of novel Li- and Na-ion chemistries and materials systems for energy storage (Chapter 3 and 5) and demonstrates further development of full-cell chemistries for industrial applications (Chapter 4). In Chapter 3, we present a method for high-power electrode development from high ionic conductivity solid-state electrolytes in a model Na-ion system: Na-[beta] alumina (NBA). The substitution of a redox active ion, Fe, for Al within the NBA structure enabled development of a high-power Na-ion battery electrode with 75% capacity retention at a 20C-rate. This work demonstrates a new avenue for materials research development in high-power materials design and improved interface compatibility of electrodes with solid state electrolytes. In Chapter 4, we present high-power Li-ion devices, which can deliver charge in a matter of minutes instead of hours, that could transform the electric vehicle market as well as consumer electronics and 'internet-of-things' (IOT) devices. The Nb2O5-based devices demonstrate the advantage of pseudocapacitive materials, those with capacitor-like kinetics, in full-cell battery systems. Energy storage devices with the demonstrated power-density capabilities are necessary to realize the clean energy goals of the upcoming decades and mark a significant step from lab-scale to practical applications. Finally, in Chapter 5, a combination of high-power and high-energy is demonstrated in amorphous sulfides: a-WSx and a-TaSy. This is the first demonstration to date of high-power, amorphous materials for energy storage with evidence of multielectron, anionic redox. The development of amorphous sulfide materials highlights the advantage of amorphous over crystalline structures for multielectron, anionic redox reversibility as well as the importance of local atomic ordering compared with long-range order for fast charging capabilities. Taken together, the work presented here delivers pathways for future materials development and design in Na- and Li-ion battery systems from fundamental materials properties for high energy and high power to full-cell, prototype devices.

Graphene Network Scaffolded Flexible Electrodes—From Lithium to Sodium Ion Batteries

Download Graphene Network Scaffolded Flexible Electrodes—From Lithium to Sodium Ion Batteries PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9811330808
Total Pages : 122 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Graphene Network Scaffolded Flexible Electrodes—From Lithium to Sodium Ion Batteries by : Dongliang Chao

Download or read book Graphene Network Scaffolded Flexible Electrodes—From Lithium to Sodium Ion Batteries written by Dongliang Chao and published by Springer. This book was released on 2018-12-11 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Research on deformable and wearable electronics has promoted an increasing demand for next-generation power sources with high energy/power density that are low cost, lightweight, thin and flexible. One key challenge in flexible electrochemical energy storage devices is the development of reliable electrodes using open-framework materials with robust structures and high performance. Based on an exploration of 3D porous graphene as a flexible substrate, this book constructs free-standing, binder-free, 3D array electrodes for use in batteries, and demonstrates the reasons for the research transformation from Li to Na batteries. It incorporates the first principles of computational investigation and in situ XRD, Raman observations to systematically reveal the working mechanism of the electrodes and structure evolution during ion insertion/extraction. These encouraging results and proposed mechanisms may accelerate further development of high rate batteries using smart nanoengineering of the electrode materials, which make “Na ion battery could be better than Li ion battery” possible.

Advanced Materials for Sodium Ion Storage

Download Advanced Materials for Sodium Ion Storage PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429753012
Total Pages : 156 pages
Book Rating : 4.4/5 (297 download)

DOWNLOAD NOW!


Book Synopsis Advanced Materials for Sodium Ion Storage by : Ranjusha Rajagopalan

Download or read book Advanced Materials for Sodium Ion Storage written by Ranjusha Rajagopalan and published by CRC Press. This book was released on 2019-07-16 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: Globally, lithium ion batteries (LIBs) are leaders in the energy storage sector but there are concerns regarding load leveling of renewable energy sources as well as smart grids and limited availability of lithium resources resulting in cost increase. Therefore, sodium ion batteries (SIBs) are being researched as next-generation alternatives to LIBs due to their similar sustainability and electrochemistry. This book mainly focuses on the current research on electrode materials and proposes future directions for SIBs to meet the current challenges associated with the full cell aspect. Further, it provide insights into scientific and practical issues in the development of SIBs.

Next-generation Batteries with Sulfur Cathodes

Download Next-generation Batteries with Sulfur Cathodes PDF Online Free

Author :
Publisher : Academic Press
ISBN 13 : 0128166126
Total Pages : 259 pages
Book Rating : 4.1/5 (281 download)

DOWNLOAD NOW!


Book Synopsis Next-generation Batteries with Sulfur Cathodes by : Krzysztof Jan Siczek

Download or read book Next-generation Batteries with Sulfur Cathodes written by Krzysztof Jan Siczek and published by Academic Press. This book was released on 2019-03-06 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: Next-Generation Batteries with Sulfur Cathodes provides a comprehensive review of a modern class of batteries with sulfur cathodes, particularly lithium-sulfur cathodes. The book covers recent trends, advantages and disadvantages in Li-S, Na-S, Al-S and Mg-S batteries and why these batteries are very promising for applications in hybrid and electric vehicles. Battery materials and modelling are also dealt with, as is their design, the physical phenomena existing in batteries, and a comparison of batteries between commonly used lithium-ion batteries and the new class of batteries with sulfur cathodes that are useful for devices like vehicles, wind power aggregates, computers and measurement units. Provides solutions for the recycling of batteries with sulfur cathodes Includes the effects of analysis and pro and cons of Li-S, Na-S, Al-S, Mg-S and Zn-S batteries Describes state-of-the-art technological developments and possible applications

Development of High Performance, Next-generation Li-ion Battery Electrode Materials

Download Development of High Performance, Next-generation Li-ion Battery Electrode Materials PDF Online Free

Author :
Publisher :
ISBN 13 : 9781369656541
Total Pages : 111 pages
Book Rating : 4.6/5 (565 download)

DOWNLOAD NOW!


Book Synopsis Development of High Performance, Next-generation Li-ion Battery Electrode Materials by : Brennan James Campbell

Download or read book Development of High Performance, Next-generation Li-ion Battery Electrode Materials written by Brennan James Campbell and published by . This book was released on 2016 with total page 111 pages. Available in PDF, EPUB and Kindle. Book excerpt: As of late, there has been an increasing interest in research to characterize and develop a new generation of Li-ion electrode materials that exhibit Li storage performance that goes beyond the incumbent Li-ion chemistries, such as graphite and lithium cobalt oxide, or LCO. LCO, pioneered by Dr. John B. Goodenough in the 1980s, has prevailed as the most common Li-ion cathode for decades, serving as a relatively stable, energy dense intercalation material with a high operating voltage and specific energy of 3.6V (nominal) and 240 Wh/kg, respectively. As well, graphite has served as the most ubiquitous secondary battery anode for an even longer period of time. As a light, cheap and reliable material, the stacks of carbon sheets within graphite have acted as a robust host for lithium, allowing the Li ions to be inserted and removed for hundreds and thousands of cycles at a low voltage. The principle method of preparing these electrode materials has been though large-scale slurry-casting on to metal foils, calendaring, and winding into various form factors, such as cylindrical or pouch. The slurry is the term used for the suspension of active electrode material (powderized), conductive additive (nano-sized carbon), and a dissolved binder, which acts as an adhesive and/or thickening agent. While LCO and graphite have provided the energy density and power density needed to realized various technologies up until today, there is a need to push the boundaries of rechargeable chemistries in terms of energy density, rate capability (related to power density), and more sensible battery "sandwich" configurations and architectures. Three promising electrode systems for future Li-ion batteries that will improve these characteristics are sulfur cathodes, altered carbon anodes, and silicon-based anodes.

Na-ion Batteries

Download Na-ion Batteries PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1789450136
Total Pages : 386 pages
Book Rating : 4.7/5 (894 download)

DOWNLOAD NOW!


Book Synopsis Na-ion Batteries by :

Download or read book Na-ion Batteries written by and published by John Wiley & Sons. This book was released on 2021-05-11 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers both the fundamental and applied aspects of advanced Na-ion batteries (NIB) which have proven to be a potential challenger to Li-ion batteries. Both the chemistry and design of positive and negative electrode materials are examined. In NIB, the electrolyte is also a crucial part of the batteries and the recent research, showing a possible alternative to classical electrolytes – with the development of ionic liquid-based electrolytes – is also explored. Cycling performance in NIB is also strongly associated with the quality of the electrode-electrolyte interface, where electrolyte degradation takes place; thus, Na-ion Batteries details the recent achievements in furthering knowledge of this interface. Finally, as the ultimate goal is commercialization of this new electrical storage technology, the last chapters are dedicated to the industrial point of view, given by two startup companies, who developed two different NIB chemistries for complementary applications and markets.

Theoretical Study on Graphite and Lithium Metal as Anode Materials for Next-Generation Rechargeable Batteries

Download Theoretical Study on Graphite and Lithium Metal as Anode Materials for Next-Generation Rechargeable Batteries PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 9811389144
Total Pages : 75 pages
Book Rating : 4.8/5 (113 download)

DOWNLOAD NOW!


Book Synopsis Theoretical Study on Graphite and Lithium Metal as Anode Materials for Next-Generation Rechargeable Batteries by : Gabin Yoon

Download or read book Theoretical Study on Graphite and Lithium Metal as Anode Materials for Next-Generation Rechargeable Batteries written by Gabin Yoon and published by Springer Nature. This book was released on 2022-07-08 with total page 75 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis describes in-depth theoretical efforts to understand the reaction mechanism of graphite and lithium metal as anodes for next-generation rechargeable batteries. The first part deals with Na intercalation chemistry in graphite, whose understanding is crucial for utilizing graphite as an anode for Na-ion batteries. The author demonstrates that Na ion intercalation in graphite is thermodynamically unstable because of the unfavorable Na-graphene interaction. To address this issue, the inclusion of screening moieties, such as solvents, is suggested and proven to enable reversible Na-solvent cointercalation in graphite. Furthermore, the author provides the correlation between the intercalation behavior and the properties of solvents, suggesting a general strategy to tailor the electrochemical intercalation chemistry. The second part addresses the Li dendrite growth issue, which is preventing practical application of Li metal anodes. A continuum mechanics study considering various experimental conditions reveals the origins of irregular growth of Li metal. The findings provide crucial clues for developing effective counter strategies to control the Li metal growth, which will advance the application of high-energy-density Li metal anodes.

Electrodes for Li-ion Batteries

Download Electrodes for Li-ion Batteries PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119007372
Total Pages : 102 pages
Book Rating : 4.1/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Electrodes for Li-ion Batteries by : Laure Monconduit

Download or read book Electrodes for Li-ion Batteries written by Laure Monconduit and published by John Wiley & Sons. This book was released on 2015-06-02 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: The electrochemical energy storage is a means to conserve electrical energy in chemical form. This form of storage benefits from the fact that these two energies share the same vector, the electron. This advantage allows us to limit the losses related to the conversion of energy from one form to another. The RS2E focuses its research on rechargeable electrochemical devices (or electrochemical storage) batteries and supercapacitors. The materials used in the electrodes are key components of lithium-ion batteries. Their nature depend battery performance in terms of mass and volume capacity, energy density, power, durability, safety, etc. This book deals with current and future positive and negative electrode materials covering aspects related to research new and better materials for future applications (related to renewable energy storage and transportation in particular), bringing light on the mechanisms of operation, aging and failure.

Computational Design of Battery Materials

Download Computational Design of Battery Materials PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3031473035
Total Pages : 589 pages
Book Rating : 4.0/5 (314 download)

DOWNLOAD NOW!


Book Synopsis Computational Design of Battery Materials by : Dorian A. H. Hanaor

Download or read book Computational Design of Battery Materials written by Dorian A. H. Hanaor and published by Springer Nature. This book was released on with total page 589 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Electrochemical Energy Storage

Download Electrochemical Energy Storage PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118998146
Total Pages : 96 pages
Book Rating : 4.1/5 (189 download)

DOWNLOAD NOW!


Book Synopsis Electrochemical Energy Storage by : Jean-Marie Tarascon

Download or read book Electrochemical Energy Storage written by Jean-Marie Tarascon and published by John Wiley & Sons. This book was released on 2015-02-23 with total page 96 pages. Available in PDF, EPUB and Kindle. Book excerpt: The electrochemical storage of energy has become essential in assisting the development of electrical transport and use of renewable energies. French researchers have played a key role in this domain but Asia is currently the market leader. Not wanting to see history repeat itself, France created the research network on electrochemical energy storage (RS2E) in 2011. This book discusses the launch of RS2E, its stakeholders, objectives, and integrated structure that assures a continuum between basic research, technological research and industries. Here, the authors will cover the technological advances as well as the challenges that must still be resolved in the field of electrochemical storage, taking into account sustainable development and the limited time available to us.

Battery Technologies

Download Battery Technologies PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 3527348581
Total Pages : 386 pages
Book Rating : 4.5/5 (273 download)

DOWNLOAD NOW!


Book Synopsis Battery Technologies by : Jianmin Ma

Download or read book Battery Technologies written by Jianmin Ma and published by John Wiley & Sons. This book was released on 2021-12-28 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Battery Technologies A state-of-the-art exploration of modern battery technology In Battery Technologies: Materials and Components, distinguished researchers Dr. Jianmin Ma delivers a comprehensive and robust overview of battery technology and new and emerging technologies related to lithium, aluminum, dual-ion, flexible, and biodegradable batteries. The book offers practical information on electrode materials, electrolytes, and the construction of battery systems. It also considers potential approaches to some of the primary challenges facing battery designers and manufacturers today. Battery Technologies: Materials and Components provides readers with: A thorough introduction to the lithium-ion battery, including cathode and anode materials, electrolytes, and binders Comprehensive explorations of lithium-oxygen batteries, including battery systems, catalysts, and anodes Practical discussions of redox flow batteries, aqueous batteries, biodegradable batteries, and flexible batteries In-depth examinations of dual-ion batteries, aluminum ion batteries, and zinc-oxygen batteries Perfect for inorganic chemists, materials scientists, and electrochemists, Battery Technologies: Materials and Components will also earn a place in the libraries of catalytic and polymer chemists seeking a one-stop resource on battery technology.

Electrode Materials for Energy Storage and Conversion

Download Electrode Materials for Energy Storage and Conversion PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000457869
Total Pages : 518 pages
Book Rating : 4.0/5 (4 download)

DOWNLOAD NOW!


Book Synopsis Electrode Materials for Energy Storage and Conversion by : Mesfin A. Kebede

Download or read book Electrode Materials for Energy Storage and Conversion written by Mesfin A. Kebede and published by CRC Press. This book was released on 2021-11-17 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive overview of the latest developments and materials used in electrochemical energy storage and conversion devices, including lithium-ion batteries, sodium-ion batteries, zinc-ion batteries, supercapacitors and conversion materials for solar and fuel cells. Chapters introduce the technologies behind each material, in addition to the fundamental principles of the devices, and their wider impact and contribution to the field. This book will be an ideal reference for researchers and individuals working in industries based on energy storage and conversion technologies across physics, chemistry and engineering. FEATURES Edited by established authorities, with chapter contributions from subject-area specialists Provides a comprehensive review of the field Up to date with the latest developments and research Editors Dr. Mesfin A. Kebede obtained his PhD in Metallurgical Engineering from Inha University, South Korea. He is now a principal research scientist at Energy Centre of Council for Scientific and Industrial Research (CSIR), South Africa. He was previously an assistant professor in the Department of Applied Physics and Materials Science at Hawassa University, Ethiopia. His extensive research experience covers the use of electrode materials for energy storage and energy conversion. Prof. Fabian I. Ezema is a professor at the University of Nigeria, Nsukka. He obtained his PhD in Physics and Astronomy from University of Nigeria, Nsukka. His research focuses on several areas of materials science with an emphasis on energy applications, specifically electrode materials for energy conversion and storage.

STUDY AND DEVELOPMENT OF LAYERED LI-NI-MN-CO OXIDE POSITIVE ELECTRODE MATERIALS FOR LITHIUM ION BATTERIES.

Download STUDY AND DEVELOPMENT OF LAYERED LI-NI-MN-CO OXIDE POSITIVE ELECTRODE MATERIALS FOR LITHIUM ION BATTERIES. PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (134 download)

DOWNLOAD NOW!


Book Synopsis STUDY AND DEVELOPMENT OF LAYERED LI-NI-MN-CO OXIDE POSITIVE ELECTRODE MATERIALS FOR LITHIUM ION BATTERIES. by : Jing Li

Download or read book STUDY AND DEVELOPMENT OF LAYERED LI-NI-MN-CO OXIDE POSITIVE ELECTRODE MATERIALS FOR LITHIUM ION BATTERIES. written by Jing Li and published by . This book was released on 2016 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Layered Li-Ni-Mn-Co oxides (NMC) with low cobalt content are promising positive electrode materials for Li-ion batteries. However, the detailed structural properties of these materials are still debated. This thesis work, in part, focused on a systematic study of layered NMC samples to understand the dependence of electrochemical properties on structure and transition metal composition, as well as the structural evolution of layered NMC materials during lithium intercalation. The calendar and cycle lifetimes of lithium-ion cells are affected by the structural stability of active electrode materials as well as parasitic reactions between the charged electrode materials and electrolyte that occur in lithium-ion batteries. It is necessary to explore the failure mechanisms of layered NMC/graphite cells to guide future improvements. This thesis work, in part, thoroughly studied the failure mechanisms of LiNi0.8Mn0.1Co0.1O2/graphite cells from the perspectives of the bulk structural stability, surface structure reconstruction and electrolyte oxidation. Core-shell (CS) structured positive electrode materials based on layered NMC could be the next generation of positive electrode materials for high energy density lithium-ion batteries. This is because a high energy core material (Ni-rich NMC), with poor stability against the electrolyte, can be protected by a thin layer of a stable and active shell material with lower Ni and higher Mn content. A large part of this thesis focused on the development of CS materials using Li-rich and Mn-rich materials as the protecting shell for voltages above 4.5 V, and on an understanding of inter-diffusion phenomena observed during the synthesis of core-shell materials.

Prospects For Li-ion Batteries And Emerging Energy Electrochemical Systems

Download Prospects For Li-ion Batteries And Emerging Energy Electrochemical Systems PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9813228156
Total Pages : 381 pages
Book Rating : 4.8/5 (132 download)

DOWNLOAD NOW!


Book Synopsis Prospects For Li-ion Batteries And Emerging Energy Electrochemical Systems by : Laure Monconduit

Download or read book Prospects For Li-ion Batteries And Emerging Energy Electrochemical Systems written by Laure Monconduit and published by World Scientific. This book was released on 2018-02-28 with total page 381 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Li-ion battery market is growing fast due to its ever increasing number of applications, from electric vehicles to portable devices. These devices are in demand due to safety reasons, energy efficiency, high power density and long life duration, which drive the need for more efficient electrochemical energy storage systems. The aim of this book is to provide the challenges and perspectives for Li-ion batteries (chapters 1 and 2), at the negative electrode as well as at the positive electrode, and for technologies beyond the Li-ion with the emerging Na-ion batteries and multivalent (Mg, Al, Ca, etc) systems (chapters 4 and 5). The aim is also to alert on the necessity to develop the recycling methods of the millions of produced batteries which are going to further flood our societies (chapter 3), and also to continuously increase the safety of the energy storage systems. For the latter challenge, it is interesting to seriously consider polymer electrolytes and batteries as an alternative (chapter 6).This book will take readers inside recent breakthroughs made in the electrochemical energy systems. It is a collaborative work of experts from the most known teams in the batteries field in Europe and beyond, from academics as well as from manufacturers.

Advanced Characterization and Modeling of Next Generation Lithium Ion Electrodes and Interfaces

Download Advanced Characterization and Modeling of Next Generation Lithium Ion Electrodes and Interfaces PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 136 pages
Book Rating : 4.:/5 (115 download)

DOWNLOAD NOW!


Book Synopsis Advanced Characterization and Modeling of Next Generation Lithium Ion Electrodes and Interfaces by : Thomas Andrew Wynn

Download or read book Advanced Characterization and Modeling of Next Generation Lithium Ion Electrodes and Interfaces written by Thomas Andrew Wynn and published by . This book was released on 2020 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: Lithium ion batteries have proven to be a paradigm shifting technology, enabling high energy density storage to power the handheld device and electric automotive revolutions. However relatively slow progress toward increased energy and power density has been made since the inception of the first functional lithium ion battery. Materials under consideration for next generation lithium ion batteries include anionic-redox-active cathodes, solid state electrolytes, and lithium metal anodes. Li-rich cathodes harness anionic redox, showing increased first charge capacity well beyond the redox capacity of traditional transition metal oxides, though suffer from severe capacity and voltage fade after the first cycle. This is in part attributed to oxygen evolution, driving surface reconstruction. Solid-state electrolytes (SSEs) offer the potential for safer devices, serving as physical barriers for dendrite penetration, while hoping to enable the lithium metal anode. The lithium metal naturally exhibits the highest volumetric energy density of all anode materials. Here, we employ simulation and advanced characterization methodologies to understand the fundamental properties of a variety of next generation lithium ion battery materials and devices leading to their successes or failures. Using density functional theory, the effect of cationic substitution on the propensity for oxygen evolution was explored. Improvement in Li-rich cathode performance is predicted and demonstrated through doping of 4d transition metal Mo. Next, lithium phosphorus oxynitride (LiPON), an SSE utilized in thin film batteries, was explored. LiPON has proven stable cycling against lithium metal anodes, though its stability is poorly understood. RF sputtered thin films of LiPON are examined via spectroscopic computational methods and nuclear magnetic resonance to reveal its atomic structure, ultimately responsible for its success as a thin film solid electrolyte. A new perspective on LiPON is presented, emphasizing its glassy nature and lack of long-range connectivity. Progress toward in situ methodologies for solid-state interfaces is described, and a protocol for FIB-produced nanobatteries is developed. Cryogenic methodologies are applied to a PEO/NCA composite electrode. Cryogenic focused ion beam was shown to preserve polymer structure and morphology, enabling accurate morphological quantification and preserving the crystallinity, as observed via TEM. Last, development of in situ solid-state interface characterization is discussed.