Synthetic Datasets for Statistical Disclosure Control

Download Synthetic Datasets for Statistical Disclosure Control PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 146140326X
Total Pages : 148 pages
Book Rating : 4.4/5 (614 download)

DOWNLOAD NOW!


Book Synopsis Synthetic Datasets for Statistical Disclosure Control by : Jörg Drechsler

Download or read book Synthetic Datasets for Statistical Disclosure Control written by Jörg Drechsler and published by Springer Science & Business Media. This book was released on 2011-06-24 with total page 148 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to give the reader a detailed introduction to the different approaches to generating multiply imputed synthetic datasets. It describes all approaches that have been developed so far, provides a brief history of synthetic datasets, and gives useful hints on how to deal with real data problems like nonresponse, skip patterns, or logical constraints. Each chapter is dedicated to one approach, first describing the general concept followed by a detailed application to a real dataset providing useful guidelines on how to implement the theory in practice. The discussed multiple imputation approaches include imputation for nonresponse, generating fully synthetic datasets, generating partially synthetic datasets, generating synthetic datasets when the original data is subject to nonresponse, and a two-stage imputation approach that helps to better address the omnipresent trade-off between analytical validity and the risk of disclosure. The book concludes with a glimpse into the future of synthetic datasets, discussing the potential benefits and possible obstacles of the approach and ways to address the concerns of data users and their understandable discomfort with using data that doesn’t consist only of the originally collected values. The book is intended for researchers and practitioners alike. It helps the researcher to find the state of the art in synthetic data summarized in one book with full reference to all relevant papers on the topic. But it is also useful for the practitioner at the statistical agency who is considering the synthetic data approach for data dissemination in the future and wants to get familiar with the topic.

Statistical Disclosure Control for Microdata

Download Statistical Disclosure Control for Microdata PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319502727
Total Pages : 299 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Statistical Disclosure Control for Microdata by : Matthias Templ

Download or read book Statistical Disclosure Control for Microdata written by Matthias Templ and published by Springer. This book was released on 2017-05-05 with total page 299 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book on statistical disclosure control presents the theory, applications and software implementation of the traditional approach to (micro)data anonymization, including data perturbation methods, disclosure risk, data utility, information loss and methods for simulating synthetic data. Introducing readers to the R packages sdcMicro and simPop, the book also features numerous examples and exercises with solutions, as well as case studies with real-world data, accompanied by the underlying R code to allow readers to reproduce all results. The demand for and volume of data from surveys, registers or other sources containing sensible information on persons or enterprises have increased significantly over the last several years. At the same time, privacy protection principles and regulations have imposed restrictions on the access and use of individual data. Proper and secure microdata dissemination calls for the application of statistical disclosure control methods to the da ta before release. This book is intended for practitioners at statistical agencies and other national and international organizations that deal with confidential data. It will also be interesting for researchers working in statistical disclosure control and the health sciences.

Flexible Imputation of Missing Data

Download Flexible Imputation of Missing Data PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1439868247
Total Pages : 344 pages
Book Rating : 4.4/5 (398 download)

DOWNLOAD NOW!


Book Synopsis Flexible Imputation of Missing Data by : Stef van Buuren

Download or read book Flexible Imputation of Missing Data written by Stef van Buuren and published by CRC Press. This book was released on 2012-03-29 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Missing data form a problem in every scientific discipline, yet the techniques required to handle them are complicated and often lacking. One of the great ideas in statistical science—multiple imputation—fills gaps in the data with plausible values, the uncertainty of which is coded in the data itself. It also solves other problems, many of which are missing data problems in disguise. Flexible Imputation of Missing Data is supported by many examples using real data taken from the author's vast experience of collaborative research, and presents a practical guide for handling missing data under the framework of multiple imputation. Furthermore, detailed guidance of implementation in R using the author’s package MICE is included throughout the book. Assuming familiarity with basic statistical concepts and multivariate methods, Flexible Imputation of Missing Data is intended for two audiences: (Bio)statisticians, epidemiologists, and methodologists in the social and health sciences Substantive researchers who do not call themselves statisticians, but who possess the necessary skills to understand the principles and to follow the recipes This graduate-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by a verbal statement that explains the formula in layperson terms. Readers less concerned with the theoretical underpinnings will be able to pick up the general idea, and technical material is available for those who desire deeper understanding. The analyses can be replicated in R using a dedicated package developed by the author.

Privacy and Anonymity in Information Management Systems

Download Privacy and Anonymity in Information Management Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1849962383
Total Pages : 201 pages
Book Rating : 4.8/5 (499 download)

DOWNLOAD NOW!


Book Synopsis Privacy and Anonymity in Information Management Systems by : Jordi Nin

Download or read book Privacy and Anonymity in Information Management Systems written by Jordi Nin and published by Springer Science & Business Media. This book was released on 2010-07-16 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: As depicted in David Lodge’s celebrated novel Small World, the perceived size of our world experienced a progressive decrease as jet airplanes became affordable to ever greater shares of the earth’s population. Yet, the really dramatic shrinking had to wait until the mid-1990s, when Internet became widespread and the information age stopped being an empty buzzword. But small is not necessarily beautiful. We now live in a global village and, alas, some (often very powerful) voices state that we ought not expect any more privacy in it. Should this be true, we would have created our own nightmare: a global village combining the worst of conventional villages, where a lot of information on an individual is known by the other villagers, and conventional big cities, where the invidual feels lost in a grim and potentially dangerous place. Whereas security is essential for organizations to survive, individuals and so- times even companies also need some privacy to develop comfortably and lead a free life. This is the reason why individual privacy is mentioned in the Univ- sal Declaration of Human Rights (1948) and data privacy is protected by law in most Western countries. Indeed, without privacy, the rest of fundamental rights, like freedom of speech and democracy, are impaired. The outstanding challenge is to create technology that implements those legal guarantees in a way compatible with functionality and security. This book edited by Dr. Javier Herranz and Dr.

Statistical Disclosure Control

Download Statistical Disclosure Control PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1118348214
Total Pages : 308 pages
Book Rating : 4.1/5 (183 download)

DOWNLOAD NOW!


Book Synopsis Statistical Disclosure Control by : Anco Hundepool

Download or read book Statistical Disclosure Control written by Anco Hundepool and published by John Wiley & Sons. This book was released on 2012-07-05 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: A reference to answer all your statistical confidentiality questions. This handbook provides technical guidance on statistical disclosure control and on how to approach the problem of balancing the need to provide users with statistical outputs and the need to protect the confidentiality of respondents. Statistical disclosure control is combined with other tools such as administrative, legal and IT in order to define a proper data dissemination strategy based on a risk management approach. The key concepts of statistical disclosure control are presented, along with the methodology and software that can be used to apply various methods of statistical disclosure control. Numerous examples and guidelines are also featured to illustrate the topics covered. Statistical Disclosure Control: Presents a combination of both theoretical and practical solutions Introduces all the key concepts and definitions involved with statistical disclosure control. Provides a high level overview of how to approach problems associated with confidentiality. Provides a broad-ranging review of the methods available to control disclosure. Explains the subtleties of group disclosure control. Features examples throughout the book along with case studies demonstrating how particular methods are used. Discusses microdata, magnitude and frequency tabular data, and remote access issues. Written by experts within leading National Statistical Institutes. Official statisticians, academics and market researchers who need to be informed and make decisions on disclosure limitation will benefit from this book.

Handbook of Statistical Data Editing and Imputation

Download Handbook of Statistical Data Editing and Imputation PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470904836
Total Pages : 453 pages
Book Rating : 4.4/5 (79 download)

DOWNLOAD NOW!


Book Synopsis Handbook of Statistical Data Editing and Imputation by : Ton de Waal

Download or read book Handbook of Statistical Data Editing and Imputation written by Ton de Waal and published by John Wiley & Sons. This book was released on 2011-03-04 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical, one-stop reference on the theory and applications of statistical data editing and imputation techniques Collected survey data are vulnerable to error. In particular, the data collection stage is a potential source of errors and missing values. As a result, the important role of statistical data editing, and the amount of resources involved, has motivated considerable research efforts to enhance the efficiency and effectiveness of this process. Handbook of Statistical Data Editing and Imputation equips readers with the essential statistical procedures for detecting and correcting inconsistencies and filling in missing values with estimates. The authors supply an easily accessible treatment of the existing methodology in this field, featuring an overview of common errors encountered in practice and techniques for resolving these issues. The book begins with an overview of methods and strategies for statistical data editing and imputation. Subsequent chapters provide detailed treatment of the central theoretical methods and modern applications, with topics of coverage including: Localization of errors in continuous data, with an outline of selective editing strategies, automatic editing for systematic and random errors, and other relevant state-of-the-art methods Extensions of automatic editing to categorical data and integer data The basic framework for imputation, with a breakdown of key methods and models and a comparison of imputation with the weighting approach to correct for missing values More advanced imputation methods, including imputation under edit restraints Throughout the book, the treatment of each topic is presented in a uniform fashion. Following an introduction, each chapter presents the key theories and formulas underlying the topic and then illustrates common applications. The discussion concludes with a summary of the main concepts and a real-world example that incorporates realistic data along with professional insight into common challenges and best practices. Handbook of Statistical Data Editing and Imputation is an essential reference for survey researchers working in the fields of business, economics, government, and the social sciences who gather, analyze, and draw results from data. It is also a suitable supplement for courses on survey methods at the upper-undergraduate and graduate levels.

Data Privacy: Foundations, New Developments and the Big Data Challenge

Download Data Privacy: Foundations, New Developments and the Big Data Challenge PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319573586
Total Pages : 279 pages
Book Rating : 4.3/5 (195 download)

DOWNLOAD NOW!


Book Synopsis Data Privacy: Foundations, New Developments and the Big Data Challenge by : Vicenç Torra

Download or read book Data Privacy: Foundations, New Developments and the Big Data Challenge written by Vicenç Torra and published by Springer. This book was released on 2017-05-17 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a broad, cohesive overview of the field of data privacy. It discusses, from a technological perspective, the problems and solutions of the three main communities working on data privacy: statistical disclosure control (those with a statistical background), privacy-preserving data mining (those working with data bases and data mining), and privacy-enhancing technologies (those involved in communications and security) communities. Presenting different approaches, the book describes alternative privacy models and disclosure risk measures as well as data protection procedures for respondent, holder and user privacy. It also discusses specific data privacy problems and solutions for readers who need to deal with big data.

Total Survey Error in Practice

Download Total Survey Error in Practice PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119041678
Total Pages : 624 pages
Book Rating : 4.1/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Total Survey Error in Practice by : Paul P. Biemer

Download or read book Total Survey Error in Practice written by Paul P. Biemer and published by John Wiley & Sons. This book was released on 2017-02-21 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Featuring a timely presentation of total survey error (TSE), this edited volume introduces valuable tools for understanding and improving survey data quality in the context of evolving large-scale data sets This book provides an overview of the TSE framework and current TSE research as related to survey design, data collection, estimation, and analysis. It recognizes that survey data affects many public policy and business decisions and thus focuses on the framework for understanding and improving survey data quality. The book also addresses issues with data quality in official statistics and in social, opinion, and market research as these fields continue to evolve, leading to larger and messier data sets. This perspective challenges survey organizations to find ways to collect and process data more efficiently without sacrificing quality. The volume consists of the most up-to-date research and reporting from over 70 contributors representing the best academics and researchers from a range of fields. The chapters are broken out into five main sections: The Concept of TSE and the TSE Paradigm, Implications for Survey Design, Data Collection and Data Processing Applications, Evaluation and Improvement, and Estimation and Analysis. Each chapter introduces and examines multiple error sources, such as sampling error, measurement error, and nonresponse error, which often offer the greatest risks to data quality, while also encouraging readers not to lose sight of the less commonly studied error sources, such as coverage error, processing error, and specification error. The book also notes the relationships between errors and the ways in which efforts to reduce one type can increase another, resulting in an estimate with larger total error. This book: • Features various error sources, and the complex relationships between them, in 25 high-quality chapters on the most up-to-date research in the field of TSE • Provides comprehensive reviews of the literature on error sources as well as data collection approaches and estimation methods to reduce their effects • Presents examples of recent international events that demonstrate the effects of data error, the importance of survey data quality, and the real-world issues that arise from these errors • Spans the four pillars of the total survey error paradigm (design, data collection, evaluation and analysis) to address key data quality issues in official statistics and survey research Total Survey Error in Practice is a reference for survey researchers and data scientists in research areas that include social science, public opinion, public policy, and business. It can also be used as a textbook or supplementary material for a graduate-level course in survey research methods.

Secure Data Management in Decentralized Systems

Download Secure Data Management in Decentralized Systems PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387276963
Total Pages : 461 pages
Book Rating : 4.3/5 (872 download)

DOWNLOAD NOW!


Book Synopsis Secure Data Management in Decentralized Systems by : Ting Yu

Download or read book Secure Data Management in Decentralized Systems written by Ting Yu and published by Springer Science & Business Media. This book was released on 2007-05-11 with total page 461 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of database security has expanded greatly, with the rapid development of global inter-networked infrastructure. Databases are no longer stand-alone systems accessible only to internal users of organizations. Today, businesses must allow selective access from different security domains. New data services emerge every day, bringing complex challenges to those whose job is to protect data security. The Internet and the web offer means for collecting and sharing data with unprecedented flexibility and convenience, presenting threats and challenges of their own. This book identifies and addresses these new challenges and more, offering solid advice for practitioners and researchers in industry.

Federal Statistics, Multiple Data Sources, and Privacy Protection

Download Federal Statistics, Multiple Data Sources, and Privacy Protection PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 0309465370
Total Pages : 195 pages
Book Rating : 4.3/5 (94 download)

DOWNLOAD NOW!


Book Synopsis Federal Statistics, Multiple Data Sources, and Privacy Protection by : National Academies of Sciences, Engineering, and Medicine

Download or read book Federal Statistics, Multiple Data Sources, and Privacy Protection written by National Academies of Sciences, Engineering, and Medicine and published by National Academies Press. This book was released on 2018-01-27 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: The environment for obtaining information and providing statistical data for policy makers and the public has changed significantly in the past decade, raising questions about the fundamental survey paradigm that underlies federal statistics. New data sources provide opportunities to develop a new paradigm that can improve timeliness, geographic or subpopulation detail, and statistical efficiency. It also has the potential to reduce the costs of producing federal statistics. The panel's first report described federal statistical agencies' current paradigm, which relies heavily on sample surveys for producing national statistics, and challenges agencies are facing; the legal frameworks and mechanisms for protecting the privacy and confidentiality of statistical data and for providing researchers access to data, and challenges to those frameworks and mechanisms; and statistical agencies access to alternative sources of data. The panel recommended a new approach for federal statistical programs that would combine diverse data sources from government and private sector sources and the creation of a new entity that would provide the foundational elements needed for this new approach, including legal authority to access data and protect privacy. This second of the panel's two reports builds on the analysis, conclusions, and recommendations in the first one. This report assesses alternative methods for implementing a new approach that would combine diverse data sources from government and private sector sources, including describing statistical models for combining data from multiple sources; examining statistical and computer science approaches that foster privacy protections; evaluating frameworks for assessing the quality and utility of alternative data sources; and various models for implementing the recommended new entity. Together, the two reports offer ideas and recommendations to help federal statistical agencies examine and evaluate data from alternative sources and then combine them as appropriate to provide the country with more timely, actionable, and useful information for policy makers, businesses, and individuals.

The Prevention and Treatment of Missing Data in Clinical Trials

Download The Prevention and Treatment of Missing Data in Clinical Trials PDF Online Free

Author :
Publisher : National Academies Press
ISBN 13 : 030918651X
Total Pages : 163 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis The Prevention and Treatment of Missing Data in Clinical Trials by : National Research Council

Download or read book The Prevention and Treatment of Missing Data in Clinical Trials written by National Research Council and published by National Academies Press. This book was released on 2010-12-21 with total page 163 pages. Available in PDF, EPUB and Kindle. Book excerpt: Randomized clinical trials are the primary tool for evaluating new medical interventions. Randomization provides for a fair comparison between treatment and control groups, balancing out, on average, distributions of known and unknown factors among the participants. Unfortunately, these studies often lack a substantial percentage of data. This missing data reduces the benefit provided by the randomization and introduces potential biases in the comparison of the treatment groups. Missing data can arise for a variety of reasons, including the inability or unwillingness of participants to meet appointments for evaluation. And in some studies, some or all of data collection ceases when participants discontinue study treatment. Existing guidelines for the design and conduct of clinical trials, and the analysis of the resulting data, provide only limited advice on how to handle missing data. Thus, approaches to the analysis of data with an appreciable amount of missing values tend to be ad hoc and variable. The Prevention and Treatment of Missing Data in Clinical Trials concludes that a more principled approach to design and analysis in the presence of missing data is both needed and possible. Such an approach needs to focus on two critical elements: (1) careful design and conduct to limit the amount and impact of missing data and (2) analysis that makes full use of information on all randomized participants and is based on careful attention to the assumptions about the nature of the missing data underlying estimates of treatment effects. In addition to the highest priority recommendations, the book offers more detailed recommendations on the conduct of clinical trials and techniques for analysis of trial data.

Privacy in Statistical Databases

Download Privacy in Statistical Databases PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 9783030575205
Total Pages : 370 pages
Book Rating : 4.5/5 (752 download)

DOWNLOAD NOW!


Book Synopsis Privacy in Statistical Databases by : Josep Domingo-Ferrer

Download or read book Privacy in Statistical Databases written by Josep Domingo-Ferrer and published by Springer. This book was released on 2020-08-21 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the International Conference on Privacy in Statistical Databases, PSD 2020, held in Tarragona, Spain, in September 2020 under the sponsorship of the UNESCO Chair in Data Privacy. The 25 revised full papers presented were carefully reviewed and selected from 49 submissions. The papers are organized into the following topics: privacy models; microdata protection; protection of statistical tables; protection of interactive and mobility databases; record linkage and alternative methods; synthetic data; data quality; and case studies. The Chapter “Explaining recurrent machine learning models: integral privacy revisited” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.

Flexible Imputation of Missing Data, Second Edition

Download Flexible Imputation of Missing Data, Second Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429960352
Total Pages : 444 pages
Book Rating : 4.4/5 (299 download)

DOWNLOAD NOW!


Book Synopsis Flexible Imputation of Missing Data, Second Edition by : Stef van Buuren

Download or read book Flexible Imputation of Missing Data, Second Edition written by Stef van Buuren and published by CRC Press. This book was released on 2018-07-17 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.

Privacy in Statistical Databases

Download Privacy in Statistical Databases PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642158374
Total Pages : 308 pages
Book Rating : 4.6/5 (421 download)

DOWNLOAD NOW!


Book Synopsis Privacy in Statistical Databases by : Josep Domingo-Ferrer

Download or read book Privacy in Statistical Databases written by Josep Domingo-Ferrer and published by Springer Science & Business Media. This book was released on 2010-09-09 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the proceedings of the International Conference on Privacy in Statistical Databases held in Corfu, Greece, in September 2010.

Recent Advances in Linear Models and Related Areas

Download Recent Advances in Linear Models and Related Areas PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3790820644
Total Pages : 448 pages
Book Rating : 4.7/5 (98 download)

DOWNLOAD NOW!


Book Synopsis Recent Advances in Linear Models and Related Areas by : Shalabh

Download or read book Recent Advances in Linear Models and Related Areas written by Shalabh and published by Springer Science & Business Media. This book was released on 2008-07-11 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection contains invited papers by distinguished statisticians to honour and acknowledge the contributions of Professor Dr. Dr. Helge Toutenburg to Statistics on the occasion of his sixty-?fth birthday. These papers present the most recent developments in the area of the linear model and its related topics. Helge Toutenburg is an established statistician and currently a Professor in the Department of Statistics at the University of Munich (Germany) and Guest Professor at the University of Basel (Switzerland). He studied Mathematics in his early years at Berlin and specialized in Statistics. Later he completed his dissertation (Dr. rer. nat. ) in 1969 on optimal prediction procedures at the University of Berlin and completed the post-doctoral thesis in 1989 at the University of Dortmund on the topic of mean squared error superiority. He taught at the Universities of Berlin, Dortmund and Regensburg before joining the University of Munich in 1991. He has various areas of interest in which he has authored and co-authored over 130 research articles and 17 books. He has made pioneering contributions in several areas of statistics, including linear inference, linear models, regression analysis, quality engineering, Taguchi methods, analysis of variance, design of experiments, and statistics in medicine and dentistry.

Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives

Download Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0470090448
Total Pages : 436 pages
Book Rating : 4.4/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives by : Andrew Gelman

Download or read book Applied Bayesian Modeling and Causal Inference from Incomplete-Data Perspectives written by Andrew Gelman and published by John Wiley & Sons. This book was released on 2004-10-22 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together a collection of articles on statistical methods relating to missing data analysis, including multiple imputation, propensity scores, instrumental variables, and Bayesian inference. Covering new research topics and real-world examples which do not feature in many standard texts. The book is dedicated to Professor Don Rubin (Harvard). Don Rubin has made fundamental contributions to the study of missing data. Key features of the book include: Comprehensive coverage of an imporant area for both research and applications. Adopts a pragmatic approach to describing a wide range of intermediate and advanced statistical techniques. Covers key topics such as multiple imputation, propensity scores, instrumental variables and Bayesian inference. Includes a number of applications from the social and health sciences. Edited and authored by highly respected researchers in the area.

Inference Control in Statistical Databases

Download Inference Control in Statistical Databases PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3540478043
Total Pages : 238 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Inference Control in Statistical Databases by : Josep Domingo-Ferrer

Download or read book Inference Control in Statistical Databases written by Josep Domingo-Ferrer and published by Springer. This book was released on 2003-08-01 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inference control in statistical databases, also known as statistical disclosure limitation or statistical confidentiality, is about finding tradeoffs to the tension between the increasing societal need for accurate statistical data and the legal and ethical obligation to protect privacy of individuals and enterprises which are the source of data for producing statistics. Techniques used by intruders to make inferences compromising privacy increasingly draw on data mining, record linkage, knowledge discovery, and data analysis and thus statistical inference control becomes an integral part of computer science. This coherent state-of-the-art survey presents some of the most recent work in the field. The papers presented together with an introduction are organized in topical sections on tabular data protection, microdata protection, and software and user case studies.