Neural Networks Theory

Download Neural Networks Theory PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540481257
Total Pages : 396 pages
Book Rating : 4.5/5 (44 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks Theory by : Alexander I. Galushkin

Download or read book Neural Networks Theory written by Alexander I. Galushkin and published by Springer Science & Business Media. This book was released on 2007-10-29 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book, written by a leader in neural network theory in Russia, uses mathematical methods in combination with complexity theory, nonlinear dynamics and optimization. It details more than 40 years of Soviet and Russian neural network research and presents a systematized methodology of neural networks synthesis. The theory is expansive: covering not just traditional topics such as network architecture but also neural continua in function spaces as well.

The Principles of Deep Learning Theory

Download The Principles of Deep Learning Theory PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316519333
Total Pages : 473 pages
Book Rating : 4.3/5 (165 download)

DOWNLOAD NOW!


Book Synopsis The Principles of Deep Learning Theory by : Daniel A. Roberts

Download or read book The Principles of Deep Learning Theory written by Daniel A. Roberts and published by Cambridge University Press. This book was released on 2022-05-26 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume develops an effective theory approach to understanding deep neural networks of practical relevance.

Process Neural Networks

Download Process Neural Networks PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540737626
Total Pages : 240 pages
Book Rating : 4.5/5 (47 download)

DOWNLOAD NOW!


Book Synopsis Process Neural Networks by : Xingui He

Download or read book Process Neural Networks written by Xingui He and published by Springer Science & Business Media. This book was released on 2010-07-05 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the first time, this book sets forth the concept and model for a process neural network. You’ll discover how a process neural network expands the mapping relationship between the input and output of traditional neural networks and greatly enhances the expression capability of artificial neural networks. Detailed illustrations help you visualize information processing flow and the mapping relationship between inputs and outputs.

The Handbook of Brain Theory and Neural Networks

Download The Handbook of Brain Theory and Neural Networks PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262011972
Total Pages : 1328 pages
Book Rating : 4.2/5 (62 download)

DOWNLOAD NOW!


Book Synopsis The Handbook of Brain Theory and Neural Networks by : Michael A. Arbib

Download or read book The Handbook of Brain Theory and Neural Networks written by Michael A. Arbib and published by MIT Press. This book was released on 2003 with total page 1328 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second edition presents the enormous progress made in recent years in the many subfields related to the two great questions : how does the brain work? and, How can we build intelligent machines? This second edition greatly increases the coverage of models of fundamental neurobiology, cognitive neuroscience, and neural network approaches to language. (Midwest).

The Handbook of Brain Theory and Neural Networks

Download The Handbook of Brain Theory and Neural Networks PDF Online Free

Author :
Publisher : MIT Press (MA)
ISBN 13 : 9780262511025
Total Pages : 1118 pages
Book Rating : 4.5/5 (11 download)

DOWNLOAD NOW!


Book Synopsis The Handbook of Brain Theory and Neural Networks by : Michael A. Arbib

Download or read book The Handbook of Brain Theory and Neural Networks written by Michael A. Arbib and published by MIT Press (MA). This book was released on 1998 with total page 1118 pages. Available in PDF, EPUB and Kindle. Book excerpt: Choice Outstanding Academic Title, 1996. In hundreds of articles by experts from around the world, and in overviews and "road maps" prepared by the editor, The Handbook of Brain Theory and Neural Networks charts the immense progress made in recent years in many specific areas related to great questions: How does the brain work? How can we build intelligent machines? While many books discuss limited aspects of one subfield or another of brain theory and neural networks, the Handbook covers the entire sweep of topics—from detailed models of single neurons, analyses of a wide variety of biological neural networks, and connectionist studies of psychology and language, to mathematical analyses of a variety of abstract neural networks, and technological applications of adaptive, artificial neural networks. Expository material makes the book accessible to readers with varied backgrounds while still offering a clear view of the recent, specialized research on specific topics.

Neural Network Learning

Download Neural Network Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 052157353X
Total Pages : 405 pages
Book Rating : 4.5/5 (215 download)

DOWNLOAD NOW!


Book Synopsis Neural Network Learning by : Martin Anthony

Download or read book Neural Network Learning written by Martin Anthony and published by Cambridge University Press. This book was released on 1999-11-04 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work explores probabilistic models of supervised learning problems and addresses the key statistical and computational questions. Chapters survey research on pattern classification with binary-output networks, including a discussion of the relevance of the Vapnik Chervonenkis dimension, and of estimates of the dimension for several neural network models. In addition, the authors develop a model of classification by real-output networks, and demonstrate the usefulness of classification...

Evolutionary Algorithms and Neural Networks

Download Evolutionary Algorithms and Neural Networks PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319930257
Total Pages : 164 pages
Book Rating : 4.3/5 (199 download)

DOWNLOAD NOW!


Book Synopsis Evolutionary Algorithms and Neural Networks by : Seyedali Mirjalili

Download or read book Evolutionary Algorithms and Neural Networks written by Seyedali Mirjalili and published by Springer. This book was released on 2018-06-26 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces readers to the fundamentals of artificial neural networks, with a special emphasis on evolutionary algorithms. At first, the book offers a literature review of several well-regarded evolutionary algorithms, including particle swarm and ant colony optimization, genetic algorithms and biogeography-based optimization. It then proposes evolutionary version of several types of neural networks such as feed forward neural networks, radial basis function networks, as well as recurrent neural networks and multi-later perceptron. Most of the challenges that have to be addressed when training artificial neural networks using evolutionary algorithms are discussed in detail. The book also demonstrates the application of the proposed algorithms for several purposes such as classification, clustering, approximation, and prediction problems. It provides a tutorial on how to design, adapt, and evaluate artificial neural networks as well, and includes source codes for most of the proposed techniques as supplementary materials.

Principal Component Neural Networks

Download Principal Component Neural Networks PDF Online Free

Author :
Publisher : Wiley-Interscience
ISBN 13 :
Total Pages : 282 pages
Book Rating : 4.3/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Principal Component Neural Networks by : K. I. Diamantaras

Download or read book Principal Component Neural Networks written by K. I. Diamantaras and published by Wiley-Interscience. This book was released on 1996-03-08 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Systematically explores the relationship between principal component analysis (PCA) and neural networks. Provides a synergistic examination of the mathematical, algorithmic, application and architectural aspects of principal component neural networks. Using a unified formulation, the authors present neural models performing PCA from the Hebbian learning rule and those which use least squares learning rules such as back-propagation. Examines the principles of biological perceptual systems to explain how the brain works. Every chapter contains a selected list of applications examples from diverse areas.

Introduction To The Theory Of Neural Computation

Download Introduction To The Theory Of Neural Computation PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0429968213
Total Pages : 352 pages
Book Rating : 4.4/5 (299 download)

DOWNLOAD NOW!


Book Synopsis Introduction To The Theory Of Neural Computation by : John A. Hertz

Download or read book Introduction To The Theory Of Neural Computation written by John A. Hertz and published by CRC Press. This book was released on 2018-03-08 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive introduction to the neural network models currently under intensive study for computational applications. It also provides coverage of neural network applications in a variety of problems of both theoretical and practical interest.

Foundations of Machine Learning, second edition

Download Foundations of Machine Learning, second edition PDF Online Free

Author :
Publisher : MIT Press
ISBN 13 : 0262351366
Total Pages : 505 pages
Book Rating : 4.2/5 (623 download)

DOWNLOAD NOW!


Book Synopsis Foundations of Machine Learning, second edition by : Mehryar Mohri

Download or read book Foundations of Machine Learning, second edition written by Mehryar Mohri and published by MIT Press. This book was released on 2018-12-25 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.

Fuzzy Neural Network Theory and Application

Download Fuzzy Neural Network Theory and Application PDF Online Free

Author :
Publisher : World Scientific
ISBN 13 : 9789812794215
Total Pages : 400 pages
Book Rating : 4.7/5 (942 download)

DOWNLOAD NOW!


Book Synopsis Fuzzy Neural Network Theory and Application by : Puyin Liu

Download or read book Fuzzy Neural Network Theory and Application written by Puyin Liu and published by World Scientific. This book was released on 2004 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book systematically synthesizes research achievements in the field of fuzzy neural networks in recent years. It also provides a comprehensive presentation of the developments in fuzzy neural networks, with regard to theory as well as their application to system modeling and image restoration. Special emphasis is placed on the fundamental concepts and architecture analysis of fuzzy neural networks. The book is unique in treating all kinds of fuzzy neural networks and their learning algorithms and universal approximations, and employing simulation examples which are carefully designed to help the reader grasp the underlying theory. This is a valuable reference for scientists and engineers working in mathematics, computer science, control or other fields related to information processing. It can also be used as a textbook for graduate courses in applied mathematics, computer science, automatic control and electrical engineering. Contents: Fuzzy Neural Networks for Storing and Classifying; Fuzzy Associative Memory OCo Feedback Networks; Regular Fuzzy Neural Networks; Polygonal Fuzzy Neural Networks; Approximation Analysis of Fuzzy Systems; Stochastic Fuzzy Systems and Approximations; Application of FNN to Image Restoration. Readership: Scientists, engineers and graduate students in applied mathematics, computer science, automatic control and information processing."

Artificial Neural Networks

Download Artificial Neural Networks PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540594888
Total Pages : 320 pages
Book Rating : 4.5/5 (948 download)

DOWNLOAD NOW!


Book Synopsis Artificial Neural Networks by : P.J. Braspenning

Download or read book Artificial Neural Networks written by P.J. Braspenning and published by Springer Science & Business Media. This book was released on 1995-06-02 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents carefully revised versions of tutorial lectures given during a School on Artificial Neural Networks for the industrial world held at the University of Limburg in Maastricht, Belgium. The major ANN architectures are discussed to show their powerful possibilities for empirical data analysis, particularly in situations where other methods seem to fail. Theoretical insight is offered by examining the underlying mathematical principles in a detailed, yet clear and illuminating way. Practical experience is provided by discussing several real-world applications in such areas as control, optimization, pattern recognition, software engineering, robotics, operations research, and CAM.

From Statistics to Neural Networks

Download From Statistics to Neural Networks PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3642791190
Total Pages : 414 pages
Book Rating : 4.6/5 (427 download)

DOWNLOAD NOW!


Book Synopsis From Statistics to Neural Networks by : Vladimir Cherkassky

Download or read book From Statistics to Neural Networks written by Vladimir Cherkassky and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: The NATO Advanced Study Institute From Statistics to Neural Networks, Theory and Pattern Recognition Applications took place in Les Arcs, Bourg Saint Maurice, France, from June 21 through July 2, 1993. The meeting brought to gether over 100 participants (including 19 invited lecturers) from 20 countries. The invited lecturers whose contributions appear in this volume are: L. Almeida (INESC, Portugal), G. Carpenter (Boston, USA), V. Cherkassky (Minnesota, USA), F. Fogelman Soulie (LRI, France), W. Freeman (Berkeley, USA), J. Friedman (Stanford, USA), F. Girosi (MIT, USA and IRST, Italy), S. Grossberg (Boston, USA), T. Hastie (AT&T, USA), J. Kittler (Surrey, UK), R. Lippmann (MIT Lincoln Lab, USA), J. Moody (OGI, USA), G. Palm (U1m, Germany), B. Ripley (Oxford, UK), R. Tibshirani (Toronto, Canada), H. Wechsler (GMU, USA), C. Wellekens (Eurecom, France) and H. White (San Diego, USA). The ASI consisted of lectures overviewing major aspects of statistical and neural network learning, their links to biological learning and non-linear dynamics (chaos), and real-life examples of pattern recognition applications. As a result of lively interactions between the participants, the following topics emerged as major themes of the meeting: (1) Unified framework for the study of Predictive Learning in Statistics and Artificial Neural Networks (ANNs); (2) Differences and similarities between statistical and ANN methods for non parametric estimation from examples (learning); (3) Fundamental connections between artificial learning systems and biological learning systems.

Static and Dynamic Neural Networks

Download Static and Dynamic Neural Networks PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 0471460923
Total Pages : 752 pages
Book Rating : 4.4/5 (714 download)

DOWNLOAD NOW!


Book Synopsis Static and Dynamic Neural Networks by : Madan Gupta

Download or read book Static and Dynamic Neural Networks written by Madan Gupta and published by John Wiley & Sons. This book was released on 2004-04-05 with total page 752 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neuronale Netze haben sich in vielen Bereichen der Informatik und künstlichen Intelligenz, der Robotik, Prozeßsteuerung und Entscheidungsfindung bewährt. Um solche Netze für immer komplexere Aufgaben entwickeln zu können, benötigen Sie solide Kenntnisse der Theorie statischer und dynamischer neuronaler Netze. Aneignen können Sie sie sich mit diesem Lehrbuch! Alle theoretischen Konzepte sind in anschaulicher Weise mit praktischen Anwendungen verknüpft. Am Ende jedes Kapitels können Sie Ihren Wissensstand anhand von Übungsaufgaben überprüfen.

Understanding Machine Learning

Download Understanding Machine Learning PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107057132
Total Pages : 415 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Understanding Machine Learning by : Shai Shalev-Shwartz

Download or read book Understanding Machine Learning written by Shai Shalev-Shwartz and published by Cambridge University Press. This book was released on 2014-05-19 with total page 415 pages. Available in PDF, EPUB and Kindle. Book excerpt: Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Neural Networks and Analog Computation

Download Neural Networks and Analog Computation PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 146120707X
Total Pages : 193 pages
Book Rating : 4.4/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Neural Networks and Analog Computation by : Hava T. Siegelmann

Download or read book Neural Networks and Analog Computation written by Hava T. Siegelmann and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 193 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theoretical foundations of Neural Networks and Analog Computation conceptualize neural networks as a particular type of computer consisting of multiple assemblies of basic processors interconnected in an intricate structure. Examining these networks under various resource constraints reveals a continuum of computational devices, several of which coincide with well-known classical models. On a mathematical level, the treatment of neural computations enriches the theory of computation but also explicated the computational complexity associated with biological networks, adaptive engineering tools, and related models from the fields of control theory and nonlinear dynamics. The material in this book will be of interest to researchers in a variety of engineering and applied sciences disciplines. In addition, the work may provide the base of a graduate-level seminar in neural networks for computer science students.

Neural Network Models

Download Neural Network Models PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9783540761297
Total Pages : 76 pages
Book Rating : 4.7/5 (612 download)

DOWNLOAD NOW!


Book Synopsis Neural Network Models by : Philippe de Wilde

Download or read book Neural Network Models written by Philippe de Wilde and published by Springer Science & Business Media. This book was released on 1997-05-30 with total page 76 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing an in-depth treatment of neural network models, this volume explains and proves the main results in a clear and accessible way. It presents the essential principles of nonlinear dynamics as derived from neurobiology, and investigates the stability, convergence behaviour and capacity of networks.