Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Neural Networks And Intellect
Download Neural Networks And Intellect full books in PDF, epub, and Kindle. Read online Neural Networks And Intellect ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Neural Networks and Intellect by : Leonid I. Perlovsky
Download or read book Neural Networks and Intellect written by Leonid I. Perlovsky and published by Oxford University Press, USA. This book was released on 2001 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: This work describes a mathematical concept of modelling field theory and its applications to a variety of problems, while offering a view of the relationships among mathematics, computational concepts in neural networks, semiotics, and concepts of mind in psychology and philosophy.
Book Synopsis Artificial Intelligence in the Age of Neural Networks and Brain Computing by : Robert Kozma
Download or read book Artificial Intelligence in the Age of Neural Networks and Brain Computing written by Robert Kozma and published by Academic Press. This book was released on 2023-10-11 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks
Book Synopsis Neural Networks in Finance and Investing by : Robert R. Trippi
Download or read book Neural Networks in Finance and Investing written by Robert R. Trippi and published by Irwin Professional Publishing. This book was released on 1996 with total page 872 pages. Available in PDF, EPUB and Kindle. Book excerpt: This completely updated version of the classic first edition offers a wealth of new material reflecting the latest developments in teh field. For investment professionals seeking to maximize this exciting new technology, this handbook is the definitive information source.
Book Synopsis Neural Networks for Intelligent Signal Processing by : Anthony Zaknich
Download or read book Neural Networks for Intelligent Signal Processing written by Anthony Zaknich and published by World Scientific. This book was released on 2003 with total page 510 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a thorough theoretical and practical introduction to the application of neural networks to pattern recognition and intelligent signal processing. It has been tested on students, unfamiliar with neural networks, who were able to pick up enough details to successfully complete their masters or final year undergraduate projects. The text also presents a comprehensive treatment of a class of neural networks called common bandwidth spherical basis function NNs, including the probabilistic NN, the modified probabilistic NN and the general regression NN.
Book Synopsis Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence by : Nikola K. Kasabov
Download or read book Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence written by Nikola K. Kasabov and published by Springer. This book was released on 2018-08-29 with total page 742 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spiking neural networks (SNN) are biologically inspired computational models that represent and process information internally as trains of spikes. This monograph book presents the classical theory and applications of SNN, including original author’s contribution to the area. The book introduces for the first time not only deep learning and deep knowledge representation in the human brain and in brain-inspired SNN, but takes that further to develop new types of AI systems, called in the book brain-inspired AI (BI-AI). BI-AI systems are illustrated on: cognitive brain data, including EEG, fMRI and DTI; audio-visual data; brain-computer interfaces; personalized modelling in bio-neuroinformatics; multisensory streaming data modelling in finance, environment and ecology; data compression; neuromorphic hardware implementation. Future directions, such as the integration of multiple modalities, such as quantum-, molecular- and brain information processing, is presented in the last chapter. The book is a research book for postgraduate students, researchers and practitioners across wider areas, including computer and information sciences, engineering, applied mathematics, bio- and neurosciences.
Book Synopsis Neural Networks and Fuzzy Systems by : Bart Kosko
Download or read book Neural Networks and Fuzzy Systems written by Bart Kosko and published by . This book was released on 1992 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by one of the foremost experts in the field of neural networks, this is the first book to combine the theories and applications or neural networks and fuzzy systems. The book is divided into three sections: Neural Network Theory, Neural Network Applications, and Fuzzy Theory and Applications. It describes how neural networks can be used in applications such as: signal and image processing, function estimation, robotics and control, analog VLSI and optical hardware design; and concludes with a presentation of the new geometric theory of fuzzy sets, systems, and associative memories.
Book Synopsis Intelligence Emerging by : Keith L. Downing
Download or read book Intelligence Emerging written by Keith L. Downing and published by MIT Press. This book was released on 2015-05-29 with total page 499 pages. Available in PDF, EPUB and Kindle. Book excerpt: An investigation of intelligence as an emergent phenomenon, integrating the perspectives of evolutionary biology, neuroscience, and artificial intelligence. Emergence—the formation of global patterns from solely local interactions—is a frequent and fascinating theme in the scientific literature both popular and academic. In this book, Keith Downing undertakes a systematic investigation of the widespread (if often vague) claim that intelligence is an emergent phenomenon. Downing focuses on neural networks, both natural and artificial, and how their adaptability in three time frames—phylogenetic (evolutionary), ontogenetic (developmental), and epigenetic (lifetime learning)—underlie the emergence of cognition. Integrating the perspectives of evolutionary biology, neuroscience, and artificial intelligence, Downing provides a series of concrete examples of neurocognitive emergence. Doing so, he offers a new motivation for the expanded use of bio-inspired concepts in artificial intelligence (AI), in the subfield known as Bio-AI. One of Downing's central claims is that two key concepts from traditional AI, search and representation, are key to understanding emergent intelligence as well. He first offers introductory chapters on five core concepts: emergent phenomena, formal search processes, representational issues in Bio-AI, artificial neural networks (ANNs), and evolutionary algorithms (EAs). Intermediate chapters delve deeper into search, representation, and emergence in ANNs, EAs, and evolving brains. Finally, advanced chapters on evolving artificial neural networks and information-theoretic approaches to assessing emergence in neural systems synthesize earlier topics to provide some perspective, predictions, and pointers for the future of Bio-AI.
Book Synopsis Artificial Intelligence Systems Based on Hybrid Neural Networks by : Michael Zgurovsky
Download or read book Artificial Intelligence Systems Based on Hybrid Neural Networks written by Michael Zgurovsky and published by Springer Nature. This book was released on 2020-09-03 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is intended for specialists as well as students and graduate students in the field of artificial intelligence, robotics and information technology. It is will also appeal to a wide range of readers interested in expanding the functionality of artificial intelligence systems. One of the pressing problems of modern artificial intelligence systems is the development of integrated hybrid systems based on deep learning. Unfortunately, there is currently no universal methodology for developing topologies of hybrid neural networks (HNN) using deep learning. The development of such systems calls for the expansion of the use of neural networks (NS) for solving recognition, classification and optimization problems. As such, it is necessary to create a unified methodology for constructing HNN with a selection of models of artificial neurons that make up HNN, gradually increasing the complexity of their structure using hybrid learning algorithms.
Book Synopsis Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering by : Nikola K. Kasabov
Download or read book Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering written by Nikola K. Kasabov and published by Marcel Alencar. This book was released on 1996 with total page 581 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combines the study of neural networks and fuzzy systems with symbolic artificial intelligence (AI) methods to build comprehensive AI systems. Describes major AI problems (pattern recognition, speech recognition, prediction, decision-making, game-playing) and provides illustrative examples. Includes applications in engineering, business and finance.
Book Synopsis Artificial Intelligence for Humans by : Jeff Heaton
Download or read book Artificial Intelligence for Humans written by Jeff Heaton and published by Createspace Independent Publishing Platform. This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: « Artifical Intelligence for Humans is a book series meant to teach AI to those readers who lack an extensive mathematical background. The reader only needs knowledge of basic college algebra and computer programming. Additional topics are thoroughly explained. Every chapter also includes a programming example. Examples are currently provided in Java, C#, and Python. Other languages are planned. »--
Book Synopsis Fundamentals of Computational Intelligence by : James M. Keller
Download or read book Fundamentals of Computational Intelligence written by James M. Keller and published by John Wiley & Sons. This book was released on 2016-07-13 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides an in-depth and even treatment of the three pillars of computational intelligence and how they relate to one another This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation. The text focuses on inspiration, design, theory, and practical aspects of implementing procedures to solve real-world problems. While other books in the three fields that comprise computational intelligence are written by specialists in one discipline, this book is co-written by current former Editor-in-Chief of IEEE Transactions on Neural Networks and Learning Systems, a former Editor-in-Chief of IEEE Transactions on Fuzzy Systems, and the founding Editor-in-Chief of IEEE Transactions on Evolutionary Computation. The coverage across the three topics is both uniform and consistent in style and notation. Discusses single-layer and multilayer neural networks, radial-basis function networks, and recurrent neural networks Covers fuzzy set theory, fuzzy relations, fuzzy logic interference, fuzzy clustering and classification, fuzzy measures and fuzzy integrals Examines evolutionary optimization, evolutionary learning and problem solving, and collective intelligence Includes end-of-chapter practice problems that will help readers apply methods and techniques to real-world problems Fundamentals of Computational intelligence is written for advanced undergraduates, graduate students, and practitioners in electrical and computer engineering, computer science, and other engineering disciplines.
Book Synopsis Pattern Recognition by Self-organizing Neural Networks by : Gail A. Carpenter
Download or read book Pattern Recognition by Self-organizing Neural Networks written by Gail A. Carpenter and published by MIT Press. This book was released on 1991 with total page 724 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pattern Recognition by Self-Organizing Neural Networks presentsthe most recent advances in an area of research that is becoming vitally important in the fields ofcognitive science, neuroscience, artificial intelligence, and neural networks in general. The 19articles take up developments in competitive learning and computational maps, adaptive resonancetheory, and specialized architectures and biological connections. Introductorysurvey articles provide a framework for understanding the many models involved in various approachesto studying neural networks. These are followed in Part 2 by articles that form the foundation formodels of competitive learning and computational mapping, and recent articles by Kohonen, applyingthem to problems in speech recognition, and by Hecht-Nielsen, applying them to problems in designingadaptive lookup tables. Articles in Part 3 focus on adaptive resonance theory (ART) networks,selforganizing pattern recognition systems whose top-down template feedback signals guarantee theirstable learning in response to arbitrary sequences of input patterns. In Part 4, articles describeembedding ART modules into larger architectures and provide experimental evidence fromneurophysiology, event-related potentials, and psychology that support the prediction that ARTmechanisms exist in the brain. Contributors: J.-P. Banquet, G.A. Carpenter, S.Grossberg, R. Hecht-Nielsen, T. Kohonen, B. Kosko, T.W. Ryan, N.A. Schmajuk, W. Singer, D. Stork, C.von der Malsburg, C.L. Winter.
Book Synopsis Computational Intelligence by : Nazmul Siddique
Download or read book Computational Intelligence written by Nazmul Siddique and published by John Wiley & Sons. This book was released on 2013-05-06 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing presents an introduction to some of the cutting edge technological paradigms under the umbrella of computational intelligence. Computational intelligence schemes are investigated with the development of a suitable framework for fuzzy logic, neural networks and evolutionary computing, neuro-fuzzy systems, evolutionary-fuzzy systems and evolutionary neural systems. Applications to linear and non-linear systems are discussed with examples. Key features: Covers all the aspects of fuzzy, neural and evolutionary approaches with worked out examples, MATLAB® exercises and applications in each chapter Presents the synergies of technologies of computational intelligence such as evolutionary fuzzy neural fuzzy and evolutionary neural systems Considers real world problems in the domain of systems modelling, control and optimization Contains a foreword written by Lotfi Zadeh Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing is an ideal text for final year undergraduate, postgraduate and research students in electrical, control, computer, industrial and manufacturing engineering.
Author :Jose G. Delgado-Frias Publisher :Springer Science & Business Media ISBN 13 :1461537525 Total Pages :411 pages Book Rating :4.4/5 (615 download)
Book Synopsis VLSI for Artificial Intelligence and Neural Networks by : Jose G. Delgado-Frias
Download or read book VLSI for Artificial Intelligence and Neural Networks written by Jose G. Delgado-Frias and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an edited selection of the papers presented at the International Workshop on VLSI for Artifidal Intelligence and Neural Networks which was held at the University of Oxford in September 1990. Our thanks go to all the contributors and especially to the programme committee for all their hard work. Thanks are also due to the ACM-SIGARCH, the IEEE Computer Society, and the lEE for publicizing the event and to the University of Oxford and SUNY-Binghamton for their active support. We are particularly grateful to Anna Morris, Maureen Doherty and Laura Duffy for coping with the administrative problems. Jose Delgado-Frias Will Moore April 1991 vii PROLOGUE Artificial intelligence and neural network algorithms/computing have increased in complexity as well as in the number of applications. This in tum has posed a tremendous need for a larger computational power than can be provided by conventional scalar processors which are oriented towards numeric and data manipulations. Due to the artificial intelligence requirements (symbolic manipulation, knowledge representation, non-deterministic computations and dynamic resource allocation) and neural network computing approach (non-programming and learning), a different set of constraints and demands are imposed on the computer architectures for these applications.
Author :Rudolph Russell Publisher :Createspace Independent Publishing Platform ISBN 13 :9781718898424 Total Pages :80 pages Book Rating :4.8/5 (984 download)
Book Synopsis Neural Networks by : Rudolph Russell
Download or read book Neural Networks written by Rudolph Russell and published by Createspace Independent Publishing Platform. This book was released on 2018-05-08 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt: NEURAL NETWORKS Buy the Paperback version of this book, and get the Kindle eBook version included for FREE! Do You Want to Become An Expert Of Neural Networks?? Start Getting this Book and Follow My Step by Step Explanations! Click Add To Cart Now! This book on neural networks will provide you with an excellent overview of the domain of deep learning neural networks. You will gain an understanding of the conception of neural networks and how biological and artificial neural networks differ from each other. You'll learn about artificial neural networks and understand how neural networks function in general. Finally, you'll learn how to teach your networks. To understand this book, you'll need to understand some preliminary mathematical concepts. This book contains illustrations and step-by-step explanations with bullet points and exercises for easy and enjoyable learning Benefits of reading this book that you're not going to find anywhere else: INTRODUCTION TO NEURAL NETWORKS STRUCTURES OF NEURAL NETWORKS BUILDING A NEURAL NETWORK THE CONSTRUCTION OF ARTIFICIAL NEURONS THE BIOLOGICAL NEURONS MODEL HOW THEY WORK THE CAPABILITIES OF NEURAL NETWORK STRUCTURE TEACHING YOUR NETWORKS METHODS OF GATHERING INFORMATION ORGANIZING YOUR NETWORK USAGE OF MOMENTUM USING NEURAL NETWORKS USING NEURAL NETWORKS IN A PRACTICAL WAY THE CAPACITY OF A SINGLE NEURON Don't miss out on this new step by step guide to Neural Networks. All you need to do is scroll up and click on the BUY NOW button to learn all about it!
Download or read book Neural Networks written by Raul Rojas and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 511 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural networks are a computing paradigm that is finding increasing attention among computer scientists. In this book, theoretical laws and models previously scattered in the literature are brought together into a general theory of artificial neural nets. Always with a view to biology and starting with the simplest nets, it is shown how the properties of models change when more general computing elements and net topologies are introduced. Each chapter contains examples, numerous illustrations, and a bibliography. The book is aimed at readers who seek an overview of the field or who wish to deepen their knowledge. It is suitable as a basis for university courses in neurocomputing.
Book Synopsis Neural Networks: Computational Models and Applications by : Huajin Tang
Download or read book Neural Networks: Computational Models and Applications written by Huajin Tang and published by Springer Science & Business Media. This book was released on 2007-03-12 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Networks: Computational Models and Applications presents important theoretical and practical issues in neural networks, including the learning algorithms of feed-forward neural networks, various dynamical properties of recurrent neural networks, winner-take-all networks and their applications in broad manifolds of computational intelligence: pattern recognition, uniform approximation, constrained optimization, NP-hard problems, and image segmentation. The book offers a compact, insightful understanding of the broad and rapidly growing neural networks domain.