Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Neural Direct Adaptive Control For Unmodeled Dynamics
Download Neural Direct Adaptive Control For Unmodeled Dynamics full books in PDF, epub, and Kindle. Read online Neural Direct Adaptive Control For Unmodeled Dynamics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Adaptive Control with Recurrent High-order Neural Networks by : George A. Rovithakis
Download or read book Adaptive Control with Recurrent High-order Neural Networks written by George A. Rovithakis and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: The series Advances in Industrial Control aims to report and encourage technology transfer in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. New theory, new controllers, actuators, sensors, new industrial processes, computer methods, new applications, new philosophies ... , new challenges. Much of this development work resides in industrial reports, feasibility study papers and the reports of advanced collaborative projects. The series offers an opportunity for researchers to present an extended exposition of such new work in all aspects of industrial control for wider and rapid dissemination. Neural networks is one of those areas where an initial burst of enthusiasm and optimism leads to an explosion of papers in the journals and many presentations at conferences but it is only in the last decade that significant theoretical work on stability, convergence and robustness for the use of neural networks in control systems has been tackled. George Rovithakis and Manolis Christodoulou have been interested in these theoretical problems and in the practical aspects of neural network applications to industrial problems. This very welcome addition to the Advances in Industrial Control series provides a succinct report of their research. The neural network model at the core of their work is the Recurrent High Order Neural Network (RHONN) and a complete theoretical and simulation development is presented. Different readers will find different aspects of the development of interest. The last chapter of the monograph discusses the problem of manufacturing or production process scheduling.
Book Synopsis Nonlinear and Adaptive Control with Applications by : Alessandro Astolfi
Download or read book Nonlinear and Adaptive Control with Applications written by Alessandro Astolfi and published by Springer Science & Business Media. This book was released on 2007-12-06 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors here provide a detailed treatment of the design of robust adaptive controllers for nonlinear systems with uncertainties. They employ a new tool based on the ideas of system immersion and manifold invariance. New algorithms are delivered for the construction of robust asymptotically-stabilizing and adaptive control laws for nonlinear systems. The methods proposed lead to modular schemes that are easier to tune than their counterparts obtained from Lyapunov redesign.
Author :Johann M.Ph. Schumann Publisher :Springer Science & Business Media ISBN 13 :3642106897 Total Pages :255 pages Book Rating :4.6/5 (421 download)
Book Synopsis Applications of Neural Networks in High Assurance Systems by : Johann M.Ph. Schumann
Download or read book Applications of Neural Networks in High Assurance Systems written by Johann M.Ph. Schumann and published by Springer Science & Business Media. This book was released on 2010-02-28 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Applications of Neural Networks in High Assurance Systems" is the first book directly addressing a key part of neural network technology: methods used to pass the tough verification and validation (V&V) standards required in many safety-critical applications. The book presents what kinds of evaluation methods have been developed across many sectors, and how to pass the tests. A new adaptive structure of V&V is developed in this book, different from the simple six sigma methods usually used for large-scale systems and different from the theorem-based approach used for simplified component subsystems.
Book Synopsis Neural Network-Based Adaptive Control of Uncertain Nonlinear Systems by : Kasra Esfandiari
Download or read book Neural Network-Based Adaptive Control of Uncertain Nonlinear Systems written by Kasra Esfandiari and published by Springer Nature. This book was released on 2021-06-18 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: The focus of this book is the application of artificial neural networks in uncertain dynamical systems. It explains how to use neural networks in concert with adaptive techniques for system identification, state estimation, and control problems. The authors begin with a brief historical overview of adaptive control, followed by a review of mathematical preliminaries. In the subsequent chapters, they present several neural network-based control schemes. Each chapter starts with a concise introduction to the problem under study, and a neural network-based control strategy is designed for the simplest case scenario. After these designs are discussed, different practical limitations (i.e., saturation constraints and unavailability of all system states) are gradually added, and other control schemes are developed based on the primary scenario. Through these exercises, the authors present structures that not only provide mathematical tools for navigating control problems, but also supply solutions that are pertinent to real-life systems.
Book Synopsis Adaptive Control Systems by : Gang Feng
Download or read book Adaptive Control Systems written by Gang Feng and published by Newnes. This book was released on 1999-06-08 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: List of contributors; Preface; Adaptive internal model control; An algorithm for robust adaptive control with less prior knowledge; Adaptive variable structure control; Indirect adaptive periodic control; Adaptive stabilization of uncertain discrete-time systems via switching control: the method of localization; Adaptive nonlinear control: passivation and small gain techniques; Active identification for control of discrete-time uncertain nonlinear systems; Optimal adaptive tracking for nonlinear systems; Stable adaptive systems in the presence of nonlinear parametrization; Adaptive inverse for actuator compensation; Stable multi-input multi-output adaptive fuzzy/neural control; Adaptive robust control scheme with an application to PM synchronous motors; Index.
Book Synopsis Robust Adaptive Control by : Petros Ioannou
Download or read book Robust Adaptive Control written by Petros Ioannou and published by Courier Corporation. This book was released on 2013-09-26 with total page 850 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presented in a tutorial style, this comprehensive treatment unifies, simplifies, and explains most of the techniques for designing and analyzing adaptive control systems. Numerous examples clarify procedures and methods. 1995 edition.
Book Synopsis Neural Network Systems Techniques and Applications by :
Download or read book Neural Network Systems Techniques and Applications written by and published by Academic Press. This book was released on 1998-02-09 with total page 459 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book emphasizes neural network structures for achieving practical and effective systems, and provides many examples. Practitioners, researchers, and students in industrial, manufacturing, electrical, mechanical,and production engineering will find this volume a unique and comprehensive reference source for diverse application methodologies. Control and Dynamic Systems covers the important topics of highly effective Orthogonal Activation Function Based Neural Network System Architecture, multi-layer recurrent neural networks for synthesizing and implementing real-time linear control,adaptive control of unknown nonlinear dynamical systems, Optimal Tracking Neural Controller techniques, a consideration of unified approximation theory and applications, techniques for the determination of multi-variable nonlinear model structures for dynamic systems with a detailed treatment of relevant system model input determination, High Order Neural Networks and Recurrent High Order Neural Networks, High Order Moment Neural Array Systems, Online Learning Neural Network controllers, and Radial Bias Function techniques. Coverage includes: - Orthogonal Activation Function Based Neural Network System Architecture (OAFNN) - Multilayer recurrent neural networks for synthesizing and implementing real-time linear control - Adaptive control of unknown nonlinear dynamical systems - Optimal Tracking Neural Controller techniques - Consideration of unified approximation theory and applications - Techniques for determining multivariable nonlinear model structures for dynamic systems, with a detailed treatment of relevant system model input determination
Book Synopsis Advances in Flight Control Systems by : Maria Agneta Balint
Download or read book Advances in Flight Control Systems written by Maria Agneta Balint and published by BoD – Books on Demand. This book was released on 2011-04-11 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nonlinear problems in flight control have stimulated cooperation among engineers and scientists from a range of disciplines. Developments in computer technology allowed for numerical solutions of nonlinear control problems, while industrial recognition and applications of nonlinear mathematical models in solving technological problems is increasing. The aim of the book Advances in Flight Control Systems is to bring together reputable researchers from different countries in order to provide a comprehensive coverage of advanced and modern topics in flight control not yet reflected by other books. This product comprises 14 contributions submitted by 38 authors from 11 different countries and areas. It covers most of the currents main streams of flight control researches, ranging from adaptive flight control mechanism, fault tolerant flight control, acceleration based flight control, helicopter flight control, comparison of flight control systems and fundamentals. According to these themes the contributions are grouped in six categories, corresponding to six parts of the book.
Book Synopsis Advances in Missile Guidance, Control, and Estimation by : S.N. Balakrishnan
Download or read book Advances in Missile Guidance, Control, and Estimation written by S.N. Balakrishnan and published by CRC Press. This book was released on 2016-04-19 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stringent demands on modern guided weapon systems require new approaches to guidance, control, and estimation. There are requirements for pinpoint accuracy, low cost per round, easy upgrade paths, enhanced performance in counter-measure environments, and the ability to track low-observable targets. Advances in Missile Guidance, Control, and Estimat
Book Synopsis Advances in Dynamics, Instrumentation and Control by : Chun-Yi Su
Download or read book Advances in Dynamics, Instrumentation and Control written by Chun-Yi Su and published by World Scientific. This book was released on 2004 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a compilation of 50 articles representing the scientific and technical advances in various aspects of system dynamics, instrumentation, measurement techniques, and control. It serves as an important resource in the field. The topics include state-of-the-art contributions in the fields of dynamics and control of nonlinear, hybrid, stochastic, time-delayed and piecewise affine systems; nonlinear control theory; control of chaotic systems; adaptive, model predictive and real-time controls, with applications involving vehicular systems, fault diagnostics, and flexible and cellular manufacturing systems, vibration suppression, biomedical, mobile robots, etc.The proceedings have been selected for coverage in: ? Index to Scientific & Technical Proceedings? (ISTP? / ISI Proceedings)? Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)? CC Proceedings ? Engineering & Physical Sciences
Book Synopsis Model-Reference Adaptive Control by : Nhan T. Nguyen
Download or read book Model-Reference Adaptive Control written by Nhan T. Nguyen and published by Springer. This book was released on 2018-03-01 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides readers with a good working knowledge of adaptive control theory through applications. It is intended for students beginning masters or doctoral courses, and control practitioners wishing to get up to speed in the subject expeditiously. Readers are taught a wide variety of adaptive control techniques starting with simple methods and extending step-by-step to more complex ones. Stability proofs are provided for all adaptive control techniques without obfuscating reader understanding with excessive mathematics. The book begins with standard model-reference adaptive control (MRAC) for first-order, second-order, and multi-input, multi-output systems. Treatment of least-squares parameter estimation and its extension to MRAC follow, helping readers to gain a different perspective on MRAC. Function approximation with orthogonal polynomials and neural networks, and MRAC using neural networks are also covered. Robustness issues connected with MRAC are discussed, helping the student to appreciate potential pitfalls of the technique. This appreciation is encouraged by drawing parallels between various aspects of robustness and linear time-invariant systems wherever relevant. Following on from the robustness problems is material covering robust adaptive control including standard methods and detailed exposition of recent advances, in particular, the author’s work on optimal control modification. Interesting properties of the new method are illustrated in the design of adaptive systems to meet stability margins. This method has been successfully flight-tested on research aircraft, one of various flight-control applications detailed towards the end of the book along with a hybrid adaptive flight control architecture that combines direct MRAC with least-squares indirect adaptive control. In addition to the applications, understanding is encouraged by the use of end-of-chapter exercises and associated MATLAB® files. Readers will need no more than the standard mathematics for basic control theory such as differential equations and matrix algebra; the book covers the foundations of MRAC and the necessary mathematical preliminaries.
Book Synopsis L1 Adaptive Control Theory by : Naira Hovakimyan
Download or read book L1 Adaptive Control Theory written by Naira Hovakimyan and published by SIAM. This book was released on 2010-09-30 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contains results not yet published in technical journals and conference proceedings.
Book Synopsis System Identification and Adaptive Control by : Yiannis Boutalis
Download or read book System Identification and Adaptive Control written by Yiannis Boutalis and published by Springer Science & Business. This book was released on 2014-04-23 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented. Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model stems from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering systems. All chapters are supported by illustrative simulation experiments, while separate chapters are devoted to the potential industrial applications of each model including projects in: • contemporary power generation; • process control and • conventional benchmarking problems. Researchers and graduate students working in adaptive estimation and intelligent control will find Neurofuzzy Adaptive Control of interest both for the currency of its models and because it demonstrates their relevance for real systems. The monograph also shows industrial engineers how to test intelligent adaptive control easily using proven theoretical results.
Book Synopsis Model Free Adaptive Control by : Zhongsheng Hou
Download or read book Model Free Adaptive Control written by Zhongsheng Hou and published by CRC Press. This book was released on 2013-09-24 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Model Free Adaptive Control: Theory and Applications summarizes theory and applications of model-free adaptive control (MFAC). MFAC is a novel adaptive control method for the unknown discrete-time nonlinear systems with time-varying parameters and time-varying structure, and the design and analysis of MFAC merely depend on the measured input and ou
Book Synopsis Stable Adaptive Neural Network Control by : S.S. Ge
Download or read book Stable Adaptive Neural Network Control written by S.S. Ge and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recent years have seen a rapid development of neural network control tech niques and their successful applications. Numerous simulation studies and actual industrial implementations show that artificial neural network is a good candidate for function approximation and control system design in solving the control problems of complex nonlinear systems in the presence of different kinds of uncertainties. Many control approaches/methods, reporting inventions and control applications within the fields of adaptive control, neural control and fuzzy systems, have been published in various books, journals and conference proceedings. In spite of these remarkable advances in neural control field, due to the complexity of nonlinear systems, the present research on adaptive neural control is still focused on the development of fundamental methodologies. From a theoretical viewpoint, there is, in general, lack of a firmly mathematical basis in stability, robustness, and performance analysis of neural network adaptive control systems. This book is motivated by the need for systematic design approaches for stable adaptive control using approximation-based techniques. The main objec tives of the book are to develop stable adaptive neural control strategies, and to perform transient performance analysis of the resulted neural control systems analytically. Other linear-in-the-parameter function approximators can replace the linear-in-the-parameter neural networks in the controllers presented in the book without any difficulty, which include polynomials, splines, fuzzy systems, wavelet networks, among others. Stability is one of the most important issues being concerned if an adaptive neural network controller is to be used in practical applications.
Book Synopsis Advances in Neural Networks - ISNN 2006 by : Jun Wang
Download or read book Advances in Neural Networks - ISNN 2006 written by Jun Wang and published by Springer Science & Business Media. This book was released on 2006-05-12 with total page 1470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is Volume II of a three volume set constituting the refereed proceedings of the Third International Symposium on Neural Networks, ISNN 2006. 616 revised papers are organized in topical sections on neurobiological analysis, theoretical analysis, neurodynamic optimization, learning algorithms, model design, kernel methods, data preprocessing, pattern classification, computer vision, image and signal processing, system modeling, robotic systems, transportation systems, communication networks, information security, fault detection, financial analysis, bioinformatics, biomedical and industrial applications, and more.
Book Synopsis Neural Network Control of Nonlinear Discrete-Time Systems by : Jagannathan Sarangapani
Download or read book Neural Network Control of Nonlinear Discrete-Time Systems written by Jagannathan Sarangapani and published by CRC Press. This book was released on 2018-10-03 with total page 624 pages. Available in PDF, EPUB and Kindle. Book excerpt: Intelligent systems are a hallmark of modern feedback control systems. But as these systems mature, we have come to expect higher levels of performance in speed and accuracy in the face of severe nonlinearities, disturbances, unforeseen dynamics, and unstructured uncertainties. Artificial neural networks offer a combination of adaptability, parallel processing, and learning capabilities that outperform other intelligent control methods in more complex systems. Borrowing from Biology Examining neurocontroller design in discrete-time for the first time, Neural Network Control of Nonlinear Discrete-Time Systems presents powerful modern control techniques based on the parallelism and adaptive capabilities of biological nervous systems. At every step, the author derives rigorous stability proofs and presents simulation examples to demonstrate the concepts. Progressive Development After an introduction to neural networks, dynamical systems, control of nonlinear systems, and feedback linearization, the book builds systematically from actuator nonlinearities and strict feedback in nonlinear systems to nonstrict feedback, system identification, model reference adaptive control, and novel optimal control using the Hamilton-Jacobi-Bellman formulation. The author concludes by developing a framework for implementing intelligent control in actual industrial systems using embedded hardware. Neural Network Control of Nonlinear Discrete-Time Systems fosters an understanding of neural network controllers and explains how to build them using detailed derivations, stability analysis, and computer simulations.