Network Models for Data Science

Download Network Models for Data Science PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108835767
Total Pages : 501 pages
Book Rating : 4.1/5 (88 download)

DOWNLOAD NOW!


Book Synopsis Network Models for Data Science by : Alan Julian Izenman

Download or read book Network Models for Data Science written by Alan Julian Izenman and published by Cambridge University Press. This book was released on 2022-12-31 with total page 501 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book to describe modern methods for analyzing complex networks arising from a wide range of disciplines.

Statistical Analysis of Network Data

Download Statistical Analysis of Network Data PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 0387881468
Total Pages : 397 pages
Book Rating : 4.3/5 (878 download)

DOWNLOAD NOW!


Book Synopsis Statistical Analysis of Network Data by : Eric D. Kolaczyk

Download or read book Statistical Analysis of Network Data written by Eric D. Kolaczyk and published by Springer Science & Business Media. This book was released on 2009-04-20 with total page 397 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years there has been an explosion of network data – that is, measu- ments that are either of or from a system conceptualized as a network – from se- ingly all corners of science. The combination of an increasingly pervasive interest in scienti c analysis at a systems level and the ever-growing capabilities for hi- throughput data collection in various elds has fueled this trend. Researchers from biology and bioinformatics to physics, from computer science to the information sciences, and from economics to sociology are more and more engaged in the c- lection and statistical analysis of data from a network-centric perspective. Accordingly, the contributions to statistical methods and modeling in this area have come from a similarly broad spectrum of areas, often independently of each other. Many books already have been written addressing network data and network problems in speci c individual disciplines. However, there is at present no single book that provides a modern treatment of a core body of knowledge for statistical analysis of network data that cuts across the various disciplines and is organized rather according to a statistical taxonomy of tasks and techniques. This book seeks to ll that gap and, as such, it aims to contribute to a growing trend in recent years to facilitate the exchange of knowledge across the pre-existing boundaries between those disciplines that play a role in what is coming to be called ‘network science.

A Survey of Statistical Network Models

Download A Survey of Statistical Network Models PDF Online Free

Author :
Publisher : Now Publishers Inc
ISBN 13 : 1601983204
Total Pages : 118 pages
Book Rating : 4.6/5 (19 download)

DOWNLOAD NOW!


Book Synopsis A Survey of Statistical Network Models by : Anna Goldenberg

Download or read book A Survey of Statistical Network Models written by Anna Goldenberg and published by Now Publishers Inc. This book was released on 2010 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.

Algorithms and Models for Network Data and Link Analysis

Download Algorithms and Models for Network Data and Link Analysis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1316712516
Total Pages : 549 pages
Book Rating : 4.3/5 (167 download)

DOWNLOAD NOW!


Book Synopsis Algorithms and Models for Network Data and Link Analysis by : François Fouss

Download or read book Algorithms and Models for Network Data and Link Analysis written by François Fouss and published by Cambridge University Press. This book was released on 2016-07-12 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: Network data are produced automatically by everyday interactions - social networks, power grids, and links between data sets are a few examples. Such data capture social and economic behavior in a form that can be analyzed using powerful computational tools. This book is a guide to both basic and advanced techniques and algorithms for extracting useful information from network data. The content is organized around 'tasks', grouping the algorithms needed to gather specific types of information and thus answer specific types of questions. Examples include similarity between nodes in a network, prestige or centrality of individual nodes, and dense regions or communities in a network. Algorithms are derived in detail and summarized in pseudo-code. The book is intended primarily for computer scientists, engineers, statisticians and physicists, but it is also accessible to network scientists based in the social sciences. MATLAB®/Octave code illustrating some of the algorithms will be available at: http://www.cambridge.org/9781107125773.

Data Science and Complex Networks

Download Data Science and Complex Networks PDF Online Free

Author :
Publisher : Oxford University Press
ISBN 13 : 0191024023
Total Pages : 136 pages
Book Rating : 4.1/5 (91 download)

DOWNLOAD NOW!


Book Synopsis Data Science and Complex Networks by : Guido Caldarelli

Download or read book Data Science and Complex Networks written by Guido Caldarelli and published by Oxford University Press. This book was released on 2016-11-10 with total page 136 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive yet short description of the basic concepts of Complex Network theory. In contrast to other books the authors present these concepts through real case studies. The application topics span from Foodwebs, to the Internet, the World Wide Web and the Social Networks, passing through the International Trade Web and Financial time series. The final part is devoted to definition and implementation of the most important network models. The text provides information on the structure of the data and on the quality of available datasets. Furthermore it provides a series of codes to allow immediate implementation of what is theoretically described in the book. Readers already used to the concepts introduced in this book can learn the art of coding in Python by using the online material. To this purpose the authors have set up a dedicated web site where readers can download and test the codes. The whole project is aimed as a learning tool for scientists and practitioners, enabling them to begin working instantly in the field of Complex Networks.

Statistical Analysis of Network Data with R

Download Statistical Analysis of Network Data with R PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 1493909835
Total Pages : 214 pages
Book Rating : 4.4/5 (939 download)

DOWNLOAD NOW!


Book Synopsis Statistical Analysis of Network Data with R by : Eric D. Kolaczyk

Download or read book Statistical Analysis of Network Data with R written by Eric D. Kolaczyk and published by Springer. This book was released on 2014-05-22 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009).

Inferential Network Analysis

Download Inferential Network Analysis PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107158125
Total Pages : 317 pages
Book Rating : 4.1/5 (71 download)

DOWNLOAD NOW!


Book Synopsis Inferential Network Analysis by : Skyler J. Cranmer

Download or read book Inferential Network Analysis written by Skyler J. Cranmer and published by Cambridge University Press. This book was released on 2020-11-19 with total page 317 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pioneering introduction of unprecedented breadth and scope to inferential and statistical methods for network analysis.

Data Science and Machine Learning

Download Data Science and Machine Learning PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1000730778
Total Pages : 538 pages
Book Rating : 4.0/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Data Science and Machine Learning by : Dirk P. Kroese

Download or read book Data Science and Machine Learning written by Dirk P. Kroese and published by CRC Press. This book was released on 2019-11-20 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code

Network Models and Optimization

Download Network Models and Optimization PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 1848001819
Total Pages : 692 pages
Book Rating : 4.8/5 (48 download)

DOWNLOAD NOW!


Book Synopsis Network Models and Optimization by : Mitsuo Gen

Download or read book Network Models and Optimization written by Mitsuo Gen and published by Springer Science & Business Media. This book was released on 2008-07-10 with total page 692 pages. Available in PDF, EPUB and Kindle. Book excerpt: Network models are critical tools in business, management, science and industry. “Network Models and Optimization” presents an insightful, comprehensive, and up-to-date treatment of multiple objective genetic algorithms to network optimization problems in many disciplines, such as engineering, computer science, operations research, transportation, telecommunication, and manufacturing. The book extensively covers algorithms and applications, including shortest path problems, minimum cost flow problems, maximum flow problems, minimum spanning tree problems, traveling salesman and postman problems, location-allocation problems, project scheduling problems, multistage-based scheduling problems, logistics network problems, communication network problem, and network models in assembly line balancing problems, and airline fleet assignment problems. The book can be used both as a student textbook and as a professional reference for practitioners who use network optimization methods to model and solve problems.

Network Science

Download Network Science PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1107076269
Total Pages : 477 pages
Book Rating : 4.1/5 (7 download)

DOWNLOAD NOW!


Book Synopsis Network Science by : Albert-László Barabási

Download or read book Network Science written by Albert-László Barabási and published by Cambridge University Press. This book was released on 2016-07-21 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: Illustrated throughout in full colour, this pioneering text is the only book you need for an introduction to network science.

Network Science Models for Data Analytics Automation

Download Network Science Models for Data Analytics Automation PDF Online Free

Author :
Publisher : Springer Nature
ISBN 13 : 3030964701
Total Pages : 126 pages
Book Rating : 4.0/5 (39 download)

DOWNLOAD NOW!


Book Synopsis Network Science Models for Data Analytics Automation by : Xin W. Chen

Download or read book Network Science Models for Data Analytics Automation written by Xin W. Chen and published by Springer Nature. This book was released on 2022-02-21 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains network science and its applications in data analytics for critical infrastructures, engineered systems, and knowledge acquisition. Each chapter describes step-by-step processes of how network science enables and automates data analytics through examples. The book not only dissects modeling techniques and analytical results but also explores the intrinsic development of these models and analyses. This unique approach bridges the gap between theory and practice and channels’ managerial and problem-solving skills. Engineers, researchers, and managers would benefit from the extensive theoretical background and practical examples discussed in this book. Advanced undergraduate students and graduate students in mathematics, statistics, engineering, business, public health, and social science may use this book as a one-semester textbook or a reference book. Readers who are more interested in applications may skip Chapter 1 and peruse through the rest of the book with ease.

A First Course in Network Science

Download A First Course in Network Science PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108579612
Total Pages : 275 pages
Book Rating : 4.1/5 (85 download)

DOWNLOAD NOW!


Book Synopsis A First Course in Network Science by : Filippo Menczer

Download or read book A First Course in Network Science written by Filippo Menczer and published by Cambridge University Press. This book was released on 2020-01-30 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: Networks are everywhere: networks of friends, transportation networks and the Web. Neurons in our brains and proteins within our bodies form networks that determine our intelligence and survival. This modern, accessible textbook introduces the basics of network science for a wide range of job sectors from management to marketing, from biology to engineering, and from neuroscience to the social sciences. Students will develop important, practical skills and learn to write code for using networks in their areas of interest - even as they are just learning to program with Python. Extensive sets of tutorials and homework problems provide plenty of hands-on practice and longer programming tutorials online further enhance students' programming skills. This intuitive and direct approach makes the book ideal for a first course, aimed at a wide audience without a strong background in mathematics or computing but with a desire to learn the fundamentals and applications of network science.

Probabilistic Foundations of Statistical Network Analysis

Download Probabilistic Foundations of Statistical Network Analysis PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1351807331
Total Pages : 236 pages
Book Rating : 4.3/5 (518 download)

DOWNLOAD NOW!


Book Synopsis Probabilistic Foundations of Statistical Network Analysis by : Harry Crane

Download or read book Probabilistic Foundations of Statistical Network Analysis written by Harry Crane and published by CRC Press. This book was released on 2018-04-17 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probabilistic Foundations of Statistical Network Analysis presents a fresh and insightful perspective on the fundamental tenets and major challenges of modern network analysis. Its lucid exposition provides necessary background for understanding the essential ideas behind exchangeable and dynamic network models, network sampling, and network statistics such as sparsity and power law, all of which play a central role in contemporary data science and machine learning applications. The book rewards readers with a clear and intuitive understanding of the subtle interplay between basic principles of statistical inference, empirical properties of network data, and technical concepts from probability theory. Its mathematically rigorous, yet non-technical, exposition makes the book accessible to professional data scientists, statisticians, and computer scientists as well as practitioners and researchers in substantive fields. Newcomers and non-quantitative researchers will find its conceptual approach invaluable for developing intuition about technical ideas from statistics and probability, while experts and graduate students will find the book a handy reference for a wide range of new topics, including edge exchangeability, relative exchangeability, graphon and graphex models, and graph-valued Levy process and rewiring models for dynamic networks. The author’s incisive commentary supplements these core concepts, challenging the reader to push beyond the current limitations of this emerging discipline. With an approachable exposition and more than 50 open research problems and exercises with solutions, this book is ideal for advanced undergraduate and graduate students interested in modern network analysis, data science, machine learning, and statistics. Harry Crane is Associate Professor and Co-Director of the Graduate Program in Statistics and Biostatistics and an Associate Member of the Graduate Faculty in Philosophy at Rutgers University. Professor Crane’s research interests cover a range of mathematical and applied topics in network science, probability theory, statistical inference, and mathematical logic. In addition to his technical work on edge and relational exchangeability, relative exchangeability, and graph-valued Markov processes, Prof. Crane’s methods have been applied to domain-specific cybersecurity and counterterrorism problems at the Foreign Policy Research Institute and RAND’s Project AIR FORCE.

Model-Based Clustering and Classification for Data Science

Download Model-Based Clustering and Classification for Data Science PDF Online Free

Author :
Publisher : Cambridge University Press
ISBN 13 : 1108640591
Total Pages : 447 pages
Book Rating : 4.1/5 (86 download)

DOWNLOAD NOW!


Book Synopsis Model-Based Clustering and Classification for Data Science by : Charles Bouveyron

Download or read book Model-Based Clustering and Classification for Data Science written by Charles Bouveyron and published by Cambridge University Press. This book was released on 2019-07-25 with total page 447 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cluster analysis finds groups in data automatically. Most methods have been heuristic and leave open such central questions as: how many clusters are there? Which method should I use? How should I handle outliers? Classification assigns new observations to groups given previously classified observations, and also has open questions about parameter tuning, robustness and uncertainty assessment. This book frames cluster analysis and classification in terms of statistical models, thus yielding principled estimation, testing and prediction methods, and sound answers to the central questions. It builds the basic ideas in an accessible but rigorous way, with extensive data examples and R code; describes modern approaches to high-dimensional data and networks; and explains such recent advances as Bayesian regularization, non-Gaussian model-based clustering, cluster merging, variable selection, semi-supervised and robust classification, clustering of functional data, text and images, and co-clustering. Written for advanced undergraduates in data science, as well as researchers and practitioners, it assumes basic knowledge of multivariate calculus, linear algebra, probability and statistics.

Graph Algorithms for Data Science

Download Graph Algorithms for Data Science PDF Online Free

Author :
Publisher : Simon and Schuster
ISBN 13 : 1617299464
Total Pages : 350 pages
Book Rating : 4.6/5 (172 download)

DOWNLOAD NOW!


Book Synopsis Graph Algorithms for Data Science by : Tomaž Bratanic

Download or read book Graph Algorithms for Data Science written by Tomaž Bratanic and published by Simon and Schuster. This book was released on 2024-02-27 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph Algorithms for Data Science teaches you how to construct graphs from both structured and unstructured data. You'll learn how the flexible Cypher query language can be used to easily manipulate graph structures, and extract amazing insights. Graph Algorithms for Data Science is a hands-on guide to working with graph-based data in applications. It's filled with fascinating and fun projects, demonstrating the ins-and-outs of graphs. You'll gain practical skills by analyzing Twitter, building graphs with NLP techniques, and much more. These powerful graph algorithms are explained in clear, jargon-free text and illustrations that makes them easy to apply to your own projects.

Network Models in Economics and Finance

Download Network Models in Economics and Finance PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319096834
Total Pages : 305 pages
Book Rating : 4.3/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Network Models in Economics and Finance by : Valery A. Kalyagin

Download or read book Network Models in Economics and Finance written by Valery A. Kalyagin and published by Springer. This book was released on 2014-09-23 with total page 305 pages. Available in PDF, EPUB and Kindle. Book excerpt: Using network models to investigate the interconnectivity in modern economic systems allows researchers to better understand and explain some economic phenomena. This volume presents contributions by known experts and active researchers in economic and financial network modeling. Readers are provided with an understanding of the latest advances in network analysis as applied to economics, finance, corporate governance, and investments. Moreover, recent advances in market network analysis that focus on influential techniques for market graph analysis are also examined. Young researchers will find this volume particularly useful in facilitating their introduction to this new and fascinating field. Professionals in economics, financial management, various technologies, and network analysis, will find the network models presented in this book beneficial in analyzing the interconnectivity in modern economic systems.

Models and Methods in Social Network Analysis

Download Models and Methods in Social Network Analysis PDF Online Free

Author :
Publisher :
ISBN 13 : 9780521809597
Total Pages : 328 pages
Book Rating : 4.8/5 (95 download)

DOWNLOAD NOW!


Book Synopsis Models and Methods in Social Network Analysis by : Peter J. Carrington

Download or read book Models and Methods in Social Network Analysis written by Peter J. Carrington and published by . This book was released on 2005-02-07 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Models and Methods in Social Network Analysis presents the most important developments in quantitative models and methods for analyzing social network data that have appeared during the 1990s. Intended as a complement to Wasserman and Faust's Social Network Analysis: Methods and Applications, it is a collection of articles by leading methodologists reviewing advances in their particular areas of network methods. Reviewed are advances in network measurement, network sampling, the analysis of centrality, positional analysis or blockmodelling, the analysis of diffusion through networks, the analysis of affiliation or 'two-mode' networks, the theory of random graphs, dependence graphs, exponential families of random graphs, the analysis of longitudinal network data, graphical techniques for exploring network data, and software for the analysis of social networks.