Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Natural Language Processing Using R Pocket Primer
Download Natural Language Processing Using R Pocket Primer full books in PDF, epub, and Kindle. Read online Natural Language Processing Using R Pocket Primer ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Natural Language Processing using R Pocket Primer by : Oswald Campesato
Download or read book Natural Language Processing using R Pocket Primer written by Oswald Campesato and published by Stylus Publishing, LLC. This book was released on 2022-01-05 with total page 297 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is for developers who are looking for an overview of basic concepts in Natural Language Processing using R. It casts a wide net of techniques to help developers who have a range of technical backgrounds. Numerous code samples and listings are included to support myriad topics. The final chapter presents the Transformer Architecture, BERT-based models, and the GPT family of models, all of which were developed during the past three years. Companion files with source code and figures are included and available for downloading by emailing the publisher at [email protected] with proof of purchase. FEATURES: Covers extensive topics related to natural language processing using R Features companion files with source code and figures from the book
Book Synopsis Natural Language Processing Using R Pocket Primer by : Oswald Campesato
Download or read book Natural Language Processing Using R Pocket Primer written by Oswald Campesato and published by Pocket Primer. This book was released on 2022-01-30 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is for developers who are looking for an overview of basic concepts in Natural Language Processing using R. It casts a wide net of techniques to help developers who have a range of technical backgrounds. Numerous code samples and listings are included to support myriad topics. The final chapter presents the Transformer Architecture, BERT-based models, and the GPT family of models, all of which were developed during the past three years. Companion files with source code and figures are included and available for downloading by emailing the publisher at [email protected] with proof of purchase. FEATURES: Covers extensive topics related to natural language processing using R Features companion files with source code and figures from the book
Book Synopsis Introduction to Natural Language Processing by : Jacob Eisenstein
Download or read book Introduction to Natural Language Processing written by Jacob Eisenstein and published by MIT Press. This book was released on 2019-10-01 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: A survey of computational methods for understanding, generating, and manipulating human language, which offers a synthesis of classical representations and algorithms with contemporary machine learning techniques. This textbook provides a technical perspective on natural language processing—methods for building computer software that understands, generates, and manipulates human language. It emphasizes contemporary data-driven approaches, focusing on techniques from supervised and unsupervised machine learning. The first section establishes a foundation in machine learning by building a set of tools that will be used throughout the book and applying them to word-based textual analysis. The second section introduces structured representations of language, including sequences, trees, and graphs. The third section explores different approaches to the representation and analysis of linguistic meaning, ranging from formal logic to neural word embeddings. The final section offers chapter-length treatments of three transformative applications of natural language processing: information extraction, machine translation, and text generation. End-of-chapter exercises include both paper-and-pencil analysis and software implementation. The text synthesizes and distills a broad and diverse research literature, linking contemporary machine learning techniques with the field's linguistic and computational foundations. It is suitable for use in advanced undergraduate and graduate-level courses and as a reference for software engineers and data scientists. Readers should have a background in computer programming and college-level mathematics. After mastering the material presented, students will have the technical skill to build and analyze novel natural language processing systems and to understand the latest research in the field.
Book Synopsis Linguistic Fundamentals for Natural Language Processing by : Emily M. Bender
Download or read book Linguistic Fundamentals for Natural Language Processing written by Emily M. Bender and published by Morgan & Claypool Publishers. This book was released on 2013-06-01 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many NLP tasks have at their core a subtask of extracting the dependencies—who did what to whom—from natural language sentences. This task can be understood as the inverse of the problem solved in different ways by diverse human languages, namely, how to indicate the relationship between different parts of a sentence. Understanding how languages solve the problem can be extremely useful in both feature design and error analysis in the application of machine learning to NLP. Likewise, understanding cross-linguistic variation can be important for the design of MT systems and other multilingual applications. The purpose of this book is to present in a succinct and accessible fashion information about the morphological and syntactic structure of human languages that can be useful in creating more linguistically sophisticated, more language-independent, and thus more successful NLP systems. Table of Contents: Acknowledgments / Introduction/motivation / Morphology: Introduction / Morphophonology / Morphosyntax / Syntax: Introduction / Parts of speech / Heads, arguments, and adjuncts / Argument types and grammatical functions / Mismatches between syntactic position and semantic roles / Resources / Bibliography / Author's Biography / General Index / Index of Languages
Book Synopsis A Primer on Scientific Programming with Python by : Hans Petter Langtangen
Download or read book A Primer on Scientific Programming with Python written by Hans Petter Langtangen and published by Springer. This book was released on 2016-07-28 with total page 942 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book serves as a first introduction to computer programming of scientific applications, using the high-level Python language. The exposition is example and problem-oriented, where the applications are taken from mathematics, numerical calculus, statistics, physics, biology and finance. The book teaches "Matlab-style" and procedural programming as well as object-oriented programming. High school mathematics is a required background and it is advantageous to study classical and numerical one-variable calculus in parallel with reading this book. Besides learning how to program computers, the reader will also learn how to solve mathematical problems, arising in various branches of science and engineering, with the aid of numerical methods and programming. By blending programming, mathematics and scientific applications, the book lays a solid foundation for practicing computational science. From the reviews: Langtangen ... does an excellent job of introducing programming as a set of skills in problem solving. He guides the reader into thinking properly about producing program logic and data structures for modeling real-world problems using objects and functions and embracing the object-oriented paradigm. ... Summing Up: Highly recommended. F. H. Wild III, Choice, Vol. 47 (8), April 2010 Those of us who have learned scientific programming in Python ‘on the streets’ could be a little jealous of students who have the opportunity to take a course out of Langtangen’s Primer.” John D. Cook, The Mathematical Association of America, September 2011 This book goes through Python in particular, and programming in general, via tasks that scientists will likely perform. It contains valuable information for students new to scientific computing and would be the perfect bridge between an introduction to programming and an advanced course on numerical methods or computational science. Alex Small, IEEE, CiSE Vol. 14 (2), March /April 2012 “This fourth edition is a wonderful, inclusive textbook that covers pretty much everything one needs to know to go from zero to fairly sophisticated scientific programming in Python...” Joan Horvath, Computing Reviews, March 2015
Download or read book Natural Language Processing written by and published by . This book was released on 1990 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Natural Language Processing Fundamentals for Developers by : Oswald Campesato
Download or read book Natural Language Processing Fundamentals for Developers written by Oswald Campesato and published by Mercury Learning and Information. This book was released on 2021-06-29 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is for developers who are looking for an overview of basic concepts in Natural Language Processing. It casts a wide net of techniques to help developers who have a range of technical backgrounds. Numerous code samples and listings are included to support myriad topics. The first chapter shows you various details of managing data that are relevant for NLP. The next pair of chapters contain NLP concepts, followed by another pair of chapters with Python code samples to illustrate those NLP concepts. Chapter 6 explores applications, e.g., sentiment analysis, recommender systems, COVID-19 analysis, spam detection, and a short discussion regarding chatbots. The final chapter presents the Transformer architecture, BERT-based models, and the GPT family of models, all of which were developed during the past three years and considered SOTA ("state of the art"). The appendices contain introductory material (including Python code samples) on regular expressions and probability/statistical concepts. Companion files with source code and figures are included. FEATURES: Covers extensive topics related to natural language processing Includes separate appendices on regular expressions and probability/statistics Features companion files with source code and figures from the book.
Book Synopsis Introduction to Probability and Statistics Using R by : G. Jay Kerns
Download or read book Introduction to Probability and Statistics Using R written by G. Jay Kerns and published by Lulu.com. This book was released on 2010-01-10 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook for an undergraduate course in probability and statistics. The approximate prerequisites are two or three semesters of calculus and some linear algebra. Students attending the class include mathematics, engineering, and computer science majors.
Book Synopsis Applied Natural Language Processing in the Enterprise by : Ankur A. Patel
Download or read book Applied Natural Language Processing in the Enterprise written by Ankur A. Patel and published by "O'Reilly Media, Inc.". This book was released on 2021-05-12 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: NLP has exploded in popularity over the last few years. But while Google, Facebook, OpenAI, and others continue to release larger language models, many teams still struggle with building NLP applications that live up to the hype. This hands-on guide helps you get up to speed on the latest and most promising trends in NLP. With a basic understanding of machine learning and some Python experience, you'll learn how to build, train, and deploy models for real-world applications in your organization. Authors Ankur Patel and Ajay Uppili Arasanipalai guide you through the process using code and examples that highlight the best practices in modern NLP. Use state-of-the-art NLP models such as BERT and GPT-3 to solve NLP tasks such as named entity recognition, text classification, semantic search, and reading comprehension Train NLP models with performance comparable or superior to that of out-of-the-box systems Learn about Transformer architecture and modern tricks like transfer learning that have taken the NLP world by storm Become familiar with the tools of the trade, including spaCy, Hugging Face, and fast.ai Build core parts of the NLP pipeline--including tokenizers, embeddings, and language models--from scratch using Python and PyTorch Take your models out of Jupyter notebooks and learn how to deploy, monitor, and maintain them in production
Book Synopsis The British National Bibliography by : Arthur James Wells
Download or read book The British National Bibliography written by Arthur James Wells and published by . This book was released on 1968 with total page 936 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Python for R Users written by Ajay Ohri and published by John Wiley & Sons. This book was released on 2017-11-13 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: The definitive guide for statisticians and data scientists who understand the advantages of becoming proficient in both R and Python The first book of its kind, Python for R Users: A Data Science Approach makes it easy for R programmers to code in Python and Python users to program in R. Short on theory and long on actionable analytics, it provides readers with a detailed comparative introduction and overview of both languages and features concise tutorials with command-by-command translations—complete with sample code—of R to Python and Python to R. Following an introduction to both languages, the author cuts to the chase with step-by-step coverage of the full range of pertinent programming features and functions, including data input, data inspection/data quality, data analysis, and data visualization. Statistical modeling, machine learning, and data mining—including supervised and unsupervised data mining methods—are treated in detail, as are time series forecasting, text mining, and natural language processing. • Features a quick-learning format with concise tutorials and actionable analytics • Provides command-by-command translations of R to Python and vice versa • Incorporates Python and R code throughout to make it easier for readers to compare and contrast features in both languages • Offers numerous comparative examples and applications in both programming languages • Designed for use for practitioners and students that know one language and want to learn the other • Supplies slides useful for teaching and learning either software on a companion website Python for R Users: A Data Science Approach is a valuable working resource for computer scientists and data scientists that know R and would like to learn Python or are familiar with Python and want to learn R. It also functions as textbook for students of computer science and statistics. A. Ohri is the founder of Decisionstats.com and currently works as a senior data scientist. He has advised multiple startups in analytics off-shoring, analytics services, and analytics education, as well as using social media to enhance buzz for analytics products. Mr. Ohri's research interests include spreading open source analytics, analyzing social media manipulation with mechanism design, simpler interfaces for cloud computing, investigating climate change and knowledge flows. His other books include R for Business Analytics and R for Cloud Computing.
Download or read book C++ Primer written by Stanley B. Lippman and published by Addison-Wesley. This book was released on 2012-08-06 with total page 3073 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bestselling Programming Tutorial and Reference Completely Rewritten for the New C++11 Standard Fully updated and recast for the newly released C++11 standard, this authoritative and comprehensive introduction to C++ will help you to learn the language fast, and to use it in modern, highly effective ways. Highlighting today’s best practices, the authors show how to use both the core language and its standard library to write efficient, readable, and powerful code. C++ Primer, Fifth Edition, introduces the C++ standard library from the outset, drawing on its common functions and facilities to help you write useful programs without first having to master every language detail. The book’s many examples have been revised to use the new language features and demonstrate how to make the best use of them. This book is a proven tutorial for those new to C++, an authoritative discussion of core C++ concepts and techniques, and a valuable resource for experienced programmers, especially those eager to see C++11 enhancements illuminated. Start Fast and Achieve More Learn how to use the new C++11 language features and the standard library to build robust programs quickly, and get comfortable with high-level programming Learn through examples that illuminate today’s best coding styles and program design techniques Understand the “rationale behind the rules”: why C++11 works as it does Use the extensive crossreferences to help you connect related concepts and insights Benefit from up-to-date learning aids and exercises that emphasize key points, help you to avoid pitfalls, promote good practices, and reinforce what you’ve learned Access the source code for the extended examples from informit.com/title/0321714113 C++ Primer, Fifth Edition, features an enhanced, layflat binding, which allows the book to stay open more easily when placed on a flat surface. This special binding method—notable by a small space inside the spine—also increases durability.
Download or read book Deep Learning written by John D. Kelleher and published by MIT Press. This book was released on 2019-09-10 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible introduction to the artificial intelligence technology that enables computer vision, speech recognition, machine translation, and driverless cars. Deep learning is an artificial intelligence technology that enables computer vision, speech recognition in mobile phones, machine translation, AI games, driverless cars, and other applications. When we use consumer products from Google, Microsoft, Facebook, Apple, or Baidu, we are often interacting with a deep learning system. In this volume in the MIT Press Essential Knowledge series, computer scientist John Kelleher offers an accessible and concise but comprehensive introduction to the fundamental technology at the heart of the artificial intelligence revolution. Kelleher explains that deep learning enables data-driven decisions by identifying and extracting patterns from large datasets; its ability to learn from complex data makes deep learning ideally suited to take advantage of the rapid growth in big data and computational power. Kelleher also explains some of the basic concepts in deep learning, presents a history of advances in the field, and discusses the current state of the art. He describes the most important deep learning architectures, including autoencoders, recurrent neural networks, and long short-term networks, as well as such recent developments as Generative Adversarial Networks and capsule networks. He also provides a comprehensive (and comprehensible) introduction to the two fundamental algorithms in deep learning: gradient descent and backpropagation. Finally, Kelleher considers the future of deep learning—major trends, possible developments, and significant challenges.
Book Synopsis Deep Learning for Natural Language Processing by : Jason Brownlee
Download or read book Deep Learning for Natural Language Processing written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2017-11-21 with total page 413 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning methods are achieving state-of-the-art results on challenging machine learning problems such as describing photos and translating text from one language to another. In this new laser-focused Ebook, finally cut through the math, research papers and patchwork descriptions about natural language processing. Using clear explanations, standard Python libraries and step-by-step tutorial lessons you will discover what natural language processing is, the promise of deep learning in the field, how to clean and prepare text data for modeling, and how to develop deep learning models for your own natural language processing projects.
Book Synopsis Computer Books and Serials in Print by :
Download or read book Computer Books and Serials in Print written by and published by . This book was released on 1985 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Head First C written by David Griffiths and published by "O'Reilly Media, Inc.". This book was released on 2012-04-03 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn key topics such as language basics, pointers and pointer arithmetic, dynamic memory management, multithreading, and network programming. Learn how to use the compiler, the make tool, and the archiver.
Book Synopsis Data Science and Machine Learning by : Dirk P. Kroese
Download or read book Data Science and Machine Learning written by Dirk P. Kroese and published by CRC Press. This book was released on 2019-11-20 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code