Multi-scale Methods for the Numerical Simulation of Flow and Reactive Transport in Porous Media

Download Multi-scale Methods for the Numerical Simulation of Flow and Reactive Transport in Porous Media PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (143 download)

DOWNLOAD NOW!


Book Synopsis Multi-scale Methods for the Numerical Simulation of Flow and Reactive Transport in Porous Media by : Manuela Bastidas Olivares (Doctor of Sciences: Mathematics)

Download or read book Multi-scale Methods for the Numerical Simulation of Flow and Reactive Transport in Porous Media written by Manuela Bastidas Olivares (Doctor of Sciences: Mathematics) and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Multi-scale Methods for the Numerical Simulation of Flow and Reactive Transport in Porous Media

Download Multi-scale Methods for the Numerical Simulation of Flow and Reactive Transport in Porous Media PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (134 download)

DOWNLOAD NOW!


Book Synopsis Multi-scale Methods for the Numerical Simulation of Flow and Reactive Transport in Porous Media by : Manuela Bastidas Olivares

Download or read book Multi-scale Methods for the Numerical Simulation of Flow and Reactive Transport in Porous Media written by Manuela Bastidas Olivares and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Reactive Flows, Diffusion and Transport

Download Reactive Flows, Diffusion and Transport PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 354028396X
Total Pages : 659 pages
Book Rating : 4.5/5 (42 download)

DOWNLOAD NOW!


Book Synopsis Reactive Flows, Diffusion and Transport by : Willi Jäger

Download or read book Reactive Flows, Diffusion and Transport written by Willi Jäger and published by Springer Science & Business Media. This book was released on 2007-05-31 with total page 659 pages. Available in PDF, EPUB and Kindle. Book excerpt: The articles in this volume summarize the research results obtained in the former SFB 359 "Reactive Flow, Diffusion and Transport" which has been supported by the DFG over the period 1993-2004. The main subjects are physical-chemical processes sharing the difficulty of interacting diffusion, transport and reaction which cannot be considered separately. The modeling and simulation within this book is accompanied by experiments.

Numerical Simulation of Fluid - Mineral Interaction and Reactive Transport in Porous and Fractured Media

Download Numerical Simulation of Fluid - Mineral Interaction and Reactive Transport in Porous and Fractured Media PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : pages
Book Rating : 4.:/5 (119 download)

DOWNLOAD NOW!


Book Synopsis Numerical Simulation of Fluid - Mineral Interaction and Reactive Transport in Porous and Fractured Media by : Mehrdad Yousefzadeh Eshkoori

Download or read book Numerical Simulation of Fluid - Mineral Interaction and Reactive Transport in Porous and Fractured Media written by Mehrdad Yousefzadeh Eshkoori and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Porous media, ubiquitous to a number of environmental and engineering systems, exhibit heterogeneity on a continuity of scales. This, combined with nonlinear processes, complex topology and coupling between different physical processes (e.g. reaction, hydrodynamics and geometry evolution), significantly complicates numerical modeling efforts where a balance between computational efficiency and accuracy has to be stricken. While effective medium theories represent computationally convenient alternatives to pore-scale models, the true macroscopic behavior of the system often significantly deviates from mean field approximations: this is due to (i) strong coupling between processes occurring at different scales and (ii) localized invalidation of the macroscale approximation. Moreover, accurate modeling of flow and reactive transport at the pore-scale calls for high-fidelity numerical methods that have a high order of accuracy, are capable of handling complex geometry and physics of the porous media problems and require less computational resources. The reactive transport problem in porous media, typically involves moving boundaries (i.e. solid-fluid interfaces), which multiply the numerical challenges. Different mathematical and modeling approaches have been developed to describe, understand and predict the system behavior at different scales, ranging from the pore to the system-scale, although handling across-scale coupling in reactive porous media systems with evolving geometries still tests the limits of current computational models. In this study, we focus on the development of novel computational tools to model reactive transport in porous media, where lack of scale separation occurs and/or where reactions may alter pore-scale topology. Such models are able to handle (i) lack of scale separation, and (ii) the geometric evolution of the pore-structure due to localized reactions within an Immersed Boundary Method (IBM) framework, while retaining model predictivity and containing the computational costs, respectively. To this end, we developed a hybrid (multi-scale) model for reactive transport in porous and fractured media that employs finer scales (pore-scale models), whenever the macroscopic models break down, and uses the computationally cheaper Darcy-scale models when their fundamental assumptions are valid. Its accuracy and capabilities have been tested for several transport scenarios. To address the challenge of numerical implementation of governing equations within the complex geometries, a high-order Immersed Boundary Method is built that is able to handle various boundary conditions relevant to mass transport in reactive systems. We have extended this IBM for moving interface problems by developing a level-set IBM (LSIBM) that can track the interface separating fluid and solid accurately. This fully Cartesian grid based method is used to investigate the dissolution and precipitation of chemical species in fractures, and the role of surface roughness in altering the reaction rates is studied.

Computational Methods for Flow and Transport in Porous Media

Download Computational Methods for Flow and Transport in Porous Media PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401711143
Total Pages : 372 pages
Book Rating : 4.4/5 (17 download)

DOWNLOAD NOW!


Book Synopsis Computational Methods for Flow and Transport in Porous Media by : J.M. Crolet

Download or read book Computational Methods for Flow and Transport in Porous Media written by J.M. Crolet and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first Symposium on Recent Advances in Problems of Flow and Transport in Porous Media was held in Marrakech in June '96 and has provided a focus for the utilization of computer methods for solving the many complex problems encountered in the field of solute transport in porous media. This symposium has been successful in bringing together scientists, physicists, hydrogeologists, researchers in soil and fluid mechanics and engineers involved in this multidisciplinary subject. It is clear that the utilization of computer-based models in this domain is still rapidly expanding and that new and novel solutions are being developed. The contributed papers which form this book reflect the recent advances, in particular with respect to new methods, inverse problems, reactive transport, unsaturated media and upscaling. These have been subdivided into the following sections: I. Numerical methods II. Mass transport and heat transfer III. Comparison with experimentation and simulation of real cases This book contains reviewed articles of the top presentations held during the International Symposium on Computer Methods in Porous Media Engineering which took place in Giens (France) in October 1998. All of the presentations and the optimism shown during the meeting provided further evidence that computer modeling is making remarkable progress and is indeed becoming an essential toolkit in the field of porous media and solute transport. I believe that the content of this book provides evidence of this and furthermore gives a comprehensive review of the theoretical developments and applications.

Simulation of Flow in Porous Media

Download Simulation of Flow in Porous Media PDF Online Free

Author :
Publisher : Walter de Gruyter
ISBN 13 : 3110282240
Total Pages : 224 pages
Book Rating : 4.1/5 (12 download)

DOWNLOAD NOW!


Book Synopsis Simulation of Flow in Porous Media by : Peter Bastian

Download or read book Simulation of Flow in Porous Media written by Peter Bastian and published by Walter de Gruyter. This book was released on 2013-07-31 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Subsurface flow problems are inherently multiscale in space due to the large variability of material properties and in time due to the coupling of many different physical processes, such as advection, diffusion, reaction and phase exchange. Subsurface flow models still need considerable development. For example, nonequilibrium effects, entrapped air, anomalous dispersion and hysteresis effects can still not be adequately described. Moreover, parameters of the models are diffcult to access and often uncertain. Computational issues in subsurface flows include the treatment of strong heterogeneities and anisotropies in the models, the effcient solution of transport-reaction problems with many species, treatment of multiphase-multicomponent flows and the coupling of subsurface flow models to surface flow models given by shallow water or Stokes equations. With respect to energy and the environment, in particular the modelling and simulation of radioactive waste management and sequestration of CO2 underground have gained high interest in the community in recent years. Both applications provide unique challenges ranging from modelling of clay materials to treating very large scale models with high-performance computing. This book brings together key numerical mathematicians whose interest is in the analysis and computation of multiscale subsurface flow and practitioners from engineering and industry whose interest is in the applications of these core problems.

On Some Problems in the Simulation of Flow and Transport Through Porous Media

Download On Some Problems in the Simulation of Flow and Transport Through Porous Media PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 450 pages
Book Rating : 4.:/5 (457 download)

DOWNLOAD NOW!


Book Synopsis On Some Problems in the Simulation of Flow and Transport Through Porous Media by : Sunil George Thomas

Download or read book On Some Problems in the Simulation of Flow and Transport Through Porous Media written by Sunil George Thomas and published by . This book was released on 2009 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: The dynamic solution of multiphase flow through porous media is of special interest to several fields of science and engineering, such as petroleum, geology and geophysics, bio-medical, civil and environmental, chemical engineering and many other disciplines. A natural application is the modeling of the flow of two immiscible fluids (phases) in a reservoir. Others, that are broadly based and considered in this work include the hydrodynamic dispersion (as in reactive transport) of a solute or tracer chemical through a fluid phase. Reservoir properties like permeability and porosity greatly influence the flow of these phases. Often, these vary across several orders of magnitude and can be discontinuous functions. Furthermore, they are generally not known to a desired level of accuracy or detail and special inverse problems need to be solved in order to obtain their estimates. Based on the physics dominating a given sub-region of the porous medium, numerical solutions to such flow problems may require different discretization schemes or different governing equations in adjacent regions. The need to couple solutions to such schemes gives rise to challenging domain decomposition problems. Finally, on an application level, present day environment concerns have resulted in a widespread increase in CO2 capture and storage experiments across the globe. This presents a huge modeling challenge for the future. This research work is divided into sections that aim to study various inter-connected problems that are of significance in sub-surface porous media applications. The first section studies an application of mortar (as well as nonmortar, i.e., enhanced velocity) mixed finite element methods (MMFEM and EV-MFEM) to problems in porous media flow. The mortar spaces are first used to develop a multiscale approach for parabolic problems in porous media applications. The implementation of the mortar mixed method is presented for two-phase immiscible flow and some a priori error estimates are then derived for the case of slightly compressible single-phase Darcy flow. Following this, the problem of modeling flow coupled to reactive transport is studied. Applications of such problems include modeling bio-remediation of oil spills and other subsurface hazardous wastes, angiogenesis in the transition of tumors from a dormant to a malignant state, contaminant transport in groundwater flow and acid injection around well bores to increase the permeability of the surrounding rock. Several numerical results are presented that demonstrate the efficiency of the method when compared to traditional approaches. The section following this examines (non-mortar) enhanced velocity finite element methods for solving multiphase flow coupled to species transport on non-matching multiblock grids. The results from this section indicate that this is the recommended method of choice for such problems. Next, a mortar finite element method is formulated and implemented that extends the scope of the classical mortar mixed finite element method developed by Arbogast et al (12) for elliptic problems and Girault et al (62) for coupling different numerical discretization schemes. Some significant areas of application include the coupling of pore-scale network models with the classical continuum models for steady single-phase Darcy flow as well as the coupling of different numerical methods such as discontinuous Galerkin and mixed finite element methods in different sub-domains for the case of single phase flow (21, 109). These hold promise for applications where a high level of detail and accuracy is desired in one part of the domain (often associated with very small length scales as in pore-scale network models) and a much lower level of detail at other parts of the domain (at much larger length scales). Examples include modeling of the flow around well bores or through faulted reservoirs. The next section presents a parallel stochastic approximation method (68, 76) applied to inverse modeling and gives several promising results that address the problem of uncertainty associated with the parameters governing multiphase flow partial differential equations. For example, medium properties such as absolute permeability and porosity greatly influence the flow behavior, but are rarely known to even a reasonable level of accuracy and are very often upscaled to large areas or volumes based on seismic measurements at discrete points. The results in this section show that by using a few measurements of the primary unknowns in multiphase flow such as fluid pressures and concentrations as well as well-log data, one can define an objective function of the medium properties to be determined, which is then minimized to determine the properties using (as in this case) a stochastic analog of Newton's method. The last section is devoted to a significant and current application area. It presents a parallel and efficient iteratively coupled implicit pressure, explicit concentration formulation (IMPEC) (52-54) for non-isothermal compositional flow problems. The goal is to perform predictive modeling simulations for CO2 sequestration experiments. While the sections presented in this work cover a broad range of topics they are actually tied to each other and serve to achieve the unifying, ultimate goal of developing a complete and robust reservoir simulator. The major results of this work, particularly in the application of MMFEM and EV-MFEM to multiphysics couplings of multiphase flow and transport as well as in the modeling of EOS non-isothermal compositional flow applied to CO2 sequestration, suggest that multiblock/multimodel methods applied in a robust parallel computational framework is invaluable when attempting to solve problems as described in Chapter 7. As an example, one may consider a closed loop control system for managing oil production or CO2 sequestration experiments in huge formations (the "instrumented oil field"). Most of the computationally costly activity occurs around a few wells. Thus one has to be able to seamlessly connect the above components while running many forward simulations on parallel clusters in a multiblock and multimodel setting where most domains employ an isothermal single-phase flow model except a few around well bores that employ, say, a non-isothermal compositional model. Simultaneously, cheap and efficient stochastic methods as in Chapter 8, may be used to generate history matches of well and/or sensor-measured solution data, to arrive at better estimates of the medium properties on the fly. This is obviously beyond the scope of the current work but represents the over-arching goal of this research.

Recent Advances in Problems of Flow and Transport in Porous Media

Download Recent Advances in Problems of Flow and Transport in Porous Media PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9401728569
Total Pages : 272 pages
Book Rating : 4.4/5 (17 download)

DOWNLOAD NOW!


Book Synopsis Recent Advances in Problems of Flow and Transport in Porous Media by : J.M. Crolet

Download or read book Recent Advances in Problems of Flow and Transport in Porous Media written by J.M. Crolet and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Porous media, and especially phenomena of transport in such materials, are an impor1ant field of interest for geologists, hydrogeologists, researchers in soil and fluid mechanics, petroleum and chemical engineers, physicists and scientists in many other disciplines. The development of better numerical simulation techniques in combination with the enormous expansion of computer tools, have enabled numerical simulation of transport phenomena (mass of phases and components, energy etc. ) in porous domains of interest. Before any practical application of the results of such simulations can be used, it is essential that the simulation models have been proven to be valid. In order to establish the greatest possible coherence between the models and the physical reality, frequent interaction between numericians, mathematicians and the previously quoted researchers, is necessary. Once this coherence is established, the numerical simulations could be used to predict various phenomena such as water management, propagation of pollutants etc. These simulations could be, in many cases, the only financially acceptable tool to carry out an investigation. Current studies within various fields of applications include not only physical comprehension aspects of flow and energy or solute transport in saturated or unsaturated media but also numerical aspects in deriving strong complex equations. Among the various fields of applications generally two types of problems can be observed. Those associated with the pollution of the environment and those linked to water management. The former are essentially a problem in industrialized countries, the latter are a major source of concern in North-Africa.

Modeling Transport Phenomena in Porous Media with Applications

Download Modeling Transport Phenomena in Porous Media with Applications PDF Online Free

Author :
Publisher : Springer
ISBN 13 : 3319698664
Total Pages : 250 pages
Book Rating : 4.3/5 (196 download)

DOWNLOAD NOW!


Book Synopsis Modeling Transport Phenomena in Porous Media with Applications by : Malay K. Das

Download or read book Modeling Transport Phenomena in Porous Media with Applications written by Malay K. Das and published by Springer. This book was released on 2017-11-21 with total page 250 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an ensemble of six major chapters, an introduction, and a closure on modeling transport phenomena in porous media with applications. Two of the six chapters explain the underlying theories, whereas the rest focus on new applications. Porous media transport is essentially a multi-scale process. Accordingly, the related theory described in the second and third chapters covers both continuum‐ and meso‐scale phenomena. Examining the continuum formulation imparts rigor to the empirical porous media models, while the mesoscopic model focuses on the physical processes within the pores. Porous media models are discussed in the context of a few important engineering applications. These include biomedical problems, gas hydrate reservoirs, regenerators, and fuel cells. The discussion reveals the strengths and weaknesses of existing models as well as future research directions.

Numerical Treatment of Multiphase Flows in Porous Media

Download Numerical Treatment of Multiphase Flows in Porous Media PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 3540675663
Total Pages : 467 pages
Book Rating : 4.5/5 (46 download)

DOWNLOAD NOW!


Book Synopsis Numerical Treatment of Multiphase Flows in Porous Media by : Zhangxin Chen

Download or read book Numerical Treatment of Multiphase Flows in Porous Media written by Zhangxin Chen and published by Springer Science & Business Media. This book was released on 2000-08-15 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: The need to predict, understand, and optimize complex physical and c- mical processes occurring in and around the earth, such as groundwater c- tamination, oil reservoir production, discovering new oil reserves, and ocean hydrodynamics, has been increasingly recognized. Despite their seemingly disparate natures, these geoscience problems have many common mathe- tical and computational characteristics. The techniques used to describe and study them are applicable across a broad range of areas. The study of the above problems through physical experiments, mat- matical theory, and computational techniques requires interdisciplinary col- boration between engineers, mathematicians, computational scientists, and other researchers working in industry, government laboratories, and univ- sities. By bringing together such researchers, meaningful progress can be made in predicting, understanding, and optimizing physical and chemical processes. The International Workshop on Fluid Flow and Transport in Porous - dia was successfully held in Beijing, China, August 2{6, 1999. The aim of this workshop was to bring together applied mathematicians, computational scientists, and engineers working actively in the mathematical and nume- cal treatment of ?uid ?ow and transport in porous media. A broad range of researchers presented papers and discussed both problems and current, state-of-the-art techniques.

Geological Carbon Storage

Download Geological Carbon Storage PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119118670
Total Pages : 372 pages
Book Rating : 4.1/5 (191 download)

DOWNLOAD NOW!


Book Synopsis Geological Carbon Storage by : Stéphanie Vialle

Download or read book Geological Carbon Storage written by Stéphanie Vialle and published by John Wiley & Sons. This book was released on 2018-11-15 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Geological Carbon Storage Subsurface Seals and Caprock Integrity Seals and caprocks are an essential component of subsurface hydrogeological systems, guiding the movement and entrapment of hydrocarbon and other fluids. Geological Carbon Storage: Subsurface Seals and Caprock Integrity offers a survey of the wealth of recent scientific work on caprock integrity with a focus on the geological controls of permanent and safe carbon dioxide storage, and the commercial deployment of geological carbon storage. Volume highlights include: Low-permeability rock characterization from the pore scale to the core scale Flow and transport properties of low-permeability rocks Fundamentals of fracture generation, self-healing, and permeability Coupled geochemical, transport and geomechanical processes in caprock Analysis of caprock behavior from natural analogues Geochemical and geophysical monitoring techniques of caprock failure and integrity Potential environmental impacts of carbon dioxide migration on groundwater resources Carbon dioxide leakage mitigation and remediation techniques Geological Carbon Storage: Subsurface Seals and Caprock Integrity is an invaluable resource for geoscientists from academic and research institutions with interests in energy and environment-related problems, as well as professionals in the field. Book Review: William R. Green, Patrick Taylor, Sven Treitel, and Moritz Fliedner, (2020), "Reviews," The Leading Edge 39: 214–216 Geological Carbon Storage: Subsurface Seals and Caprock Integrity, edited by Stéphanie Vialle, Jonathan Ajo-Franklin, and J. William Carey, ISBN 978-1-119-11864-0, 2018, American Geophysical Union and Wiley, 364 p., US$199.95 (print), US$159.99 (eBook). This volume is a part of the AGU/Wiley Geophysical Monograph Series. The editors assembled an international team of earth scientists who present a comprehensive approach to the major problem of placing unwanted and/or hazardous fluids beneath a cap rock seal to be impounded. The compact and informative preface depicts the nature of cap rocks and the problems that may occur over time or with a change in the formation of the cap rock. I have excerpted a quote from the preface that describes the scope of the volume in a concise and thorough matter. “Caprocks can be defined as a rock that prevents the flow of a given fluid at certain temperature, pressure, and chemical conditions. ... A fundamental understanding of these units and of their evolution over time in the context of subsurface carbon storage is still lacking.” This volume describes the scope of current research being conducted on a global scale, with 31 of the 83 authors working outside of the United States. The studies vary but can be generalized as monitoring techniques for cap rock integrity and the consequence of the loss of that integrity. The preface ends by calling out important problems that remain to be answered. These include imaging cap rocks in situ, detecting subsurface leaks before they reach the surface, and remotely examining the state of the cap rock to avert any problems. Chapter 3 describes how newer methods are used to classify shale. These advanced techniques reveal previously unknown microscopic properties that complicate classification. This is an example of the more we know, the more we don't know. A sedimentologic study of the formation of shale (by far the major sedimentary rock and an important rock type) is described in Chapter 4. The authors use diagrammatic examples to illustrate how cap rocks may fail through imperfect seal between the drill and wall rock, capillary action, or a structural defect (fault). Also, the shale pore structures vary in size, and this affects the reservoir. There are descriptions of the pore structure in the Eagle Ford and Marcellus shales and several others. Pore structures are analyzed using state-of-the-art ultra-small-angle X-ray or neutron scattering. They determine that the overall porosity decreases nonlinearly with time. There are examples of cap rock performance under an array of diagnostic laboratory analyses and geologic field examples (e.g., Marcellus Formation). The importance of the sequestration of CO2 and other contaminants highlights the significance of this volume. The previous and following chapters illuminate the life history of the lithologic reservoir seal. I would like to call out Chapter 14 in which the authors illustrate the various mechanisms by which a seal can fail and Chapter 15 in which the authors address the general problems of the effect of CO2 sequestration on the environment. They establish a field test, consisting of a trailer and large tank of fluids with numerous monitoring instruments to replicate the effect of a controlled release of CO2-saturated water into a shallow aquifer. This chapter's extensive list of references will be of interest to petroleum engineers, rock mechanics, and environmentalists. The authors of this volume present a broad view of the underground storage of CO2. Nuclear waste and hydrocarbons are also considered for underground storage. There are laboratory, field, and in situ studies covering nearly all aspects of this problem. I cannot remember a study in which so many different earth science resources were applied to a single problem. The span of subjects varies from traditional geochemical analysis with the standard and latest methods in infrared and X-ray techniques, chemical and petroleum engineering, sedimentary mineralogy, hydrology, and geomechanical studies. This volume is essential to anyone working in this field as it brings several disciplines together to produce a comprehensive study of carbon sequestration. While the volume is well illustrated, there is a lack of color figures. Each chapter should have at least two color figures, or there should be several pages of color figures bound in the center of the volume. Many of the figures would be more meaningful if they had been rendered in color. Also, the acronyms are defined in the individual chapters, but it would be helpful to have a list of acronyms after the extensive index. I recommend this monograph to all earth scientists but especially petroleum engineers, structural geologists, mineralogists, and environmental scientists. Since these chapters cover a broad range of studies, it would be best if the reader has a broad background. — Patrick Taylor Davidsonville, Maryland

Pore-scale Direct Numerical Simulation of Flow and Transport in Porous Media

Download Pore-scale Direct Numerical Simulation of Flow and Transport in Porous Media PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 0 pages
Book Rating : 4.:/5 (472 download)

DOWNLOAD NOW!


Book Synopsis Pore-scale Direct Numerical Simulation of Flow and Transport in Porous Media by : Sreejith Pulloor Kuttanikkad

Download or read book Pore-scale Direct Numerical Simulation of Flow and Transport in Porous Media written by Sreejith Pulloor Kuttanikkad and published by . This book was released on 2009 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Mathematical Modeling for Flow and Transport Through Porous Media

Download Mathematical Modeling for Flow and Transport Through Porous Media PDF Online Free

Author :
Publisher : Springer Science & Business Media
ISBN 13 : 9780792316169
Total Pages : 312 pages
Book Rating : 4.3/5 (161 download)

DOWNLOAD NOW!


Book Synopsis Mathematical Modeling for Flow and Transport Through Porous Media by : Gedeon Dagan

Download or read book Mathematical Modeling for Flow and Transport Through Porous Media written by Gedeon Dagan and published by Springer Science & Business Media. This book was released on 1991 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains a selection of articles presented at an International Workshop on `Mathematical Modeling for Flow and Transport Through Porous Media'. The major topics of the meeting were free and moving boundary problems, structured media, multiphase flow, scale problems, stochastic aspects, parameter identification and optimization problems. The volume also represents a few contributions on the incorporation of chemical and biological processes in mathematical models for transport in porous media. The book is directed at researchers active in porous media, mathematical modeling, petroleum and geotechnical engineering and environmental sciences.

The Handbook of Groundwater Engineering, Third Edition

Download The Handbook of Groundwater Engineering, Third Edition PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 1315354535
Total Pages : 1726 pages
Book Rating : 4.3/5 (153 download)

DOWNLOAD NOW!


Book Synopsis The Handbook of Groundwater Engineering, Third Edition by : John H. Cushman

Download or read book The Handbook of Groundwater Engineering, Third Edition written by John H. Cushman and published by CRC Press. This book was released on 2016-11-25 with total page 1726 pages. Available in PDF, EPUB and Kindle. Book excerpt: This new edition adds several new chapters and is thoroughly updated to include data on new topics such as hydraulic fracturing, CO2 sequestration, sustainable groundwater management, and more. Providing a complete treatment of the theory and practice of groundwater engineering, this new handbook also presents a current and detailed review of how to model the flow of water and the transport of contaminants both in the unsaturated and saturated zones, covers the protection of groundwater, and the remediation of contaminated groundwater.

Mathematical and Numerical Modeling in Porous Media

Download Mathematical and Numerical Modeling in Porous Media PDF Online Free

Author :
Publisher : CRC Press
ISBN 13 : 0203113888
Total Pages : 370 pages
Book Rating : 4.2/5 (31 download)

DOWNLOAD NOW!


Book Synopsis Mathematical and Numerical Modeling in Porous Media by : Martin A. Diaz Viera

Download or read book Mathematical and Numerical Modeling in Porous Media written by Martin A. Diaz Viera and published by CRC Press. This book was released on 2012-07-24 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: Porous media are broadly found in nature and their study is of high relevance in our present lives. In geosciences porous media research is fundamental in applications to aquifers, mineral mines, contaminant transport, soil remediation, waste storage, oil recovery and geothermal energy deposits. Despite their importance, there is as yet no complete

A New Adaptive Modeling of Flow and Transport in Porous Media Using an Enhanced Velocity Scheme

Download A New Adaptive Modeling of Flow and Transport in Porous Media Using an Enhanced Velocity Scheme PDF Online Free

Author :
Publisher :
ISBN 13 :
Total Pages : 384 pages
Book Rating : 4.:/5 (15 download)

DOWNLOAD NOW!


Book Synopsis A New Adaptive Modeling of Flow and Transport in Porous Media Using an Enhanced Velocity Scheme by : Yerlan Amanbek

Download or read book A New Adaptive Modeling of Flow and Transport in Porous Media Using an Enhanced Velocity Scheme written by Yerlan Amanbek and published by . This book was released on 2018 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiscale modeling of subsurface flow and transport is a major area of interest in several applications including petroleum recovery evaluations, nuclear waste disposal systems, CO2 sequestration, groundwater remediation and contaminant plume migration in heterogeneous porous media. During these processes the direct numerical simulation is computationally intensive due to detailed fine scale characterization of the subsurface formations. The main objective of this work is to develop an efficient multiscale framework to reduce usage of fine scale properties associated with advection and diffusion/dispersion, while maintaining accuracy of quantities of interest including mass balance, pressure, velocity, concentration. Another purpose of this work is to investigate the adaptivity criteria in transport and flow problems numerically and/or theoretically based on error estimates. We propose a new adaptive numerical homogenization method using numerical homogenization and Enhanced Velocity Mixed Finite Element Method (EVMFEM). We focus on upscaling the permeability and porosity fields for slightly (nonlinear) compressible single phase Darcy flow and transport problems in heterogeneous porous media. The fine grids are used in the transient regions where spatial changes in transported species concentrations are large while a coarse scale problem is solved in the remaining subdomains. Away from transient region, effective macroscopic properties are obtained using local numerical homogenization. An Enhanced Velocity Mixed Finite Element Method (EVMFEM) as a domain decomposition scheme is used to couple these coarse and fine subdomains [85]. Specifically, homogenization is employed here only when coarse and fine scale problems can be decoupled to extract temporal invariants in the form of effective parameters. In this dissertation, a number of numerical tests are presented for demonstrating the capabilities of this adaptive numerical homogenization approach in upscaling flow and transport in heterogeneous porous medium. We have also derived a priori error estimate for a parabolic problem using Backward Euler and Crank-Nicolson method in time and EVMFEM in space. Next, we have established a posteriori error estimate in EVMFEM setting for incompressible flow problems. We first propose the flux reconstruction for error estimates and prove the upper and lower bound theorems. Next, the explicit residual-based estimates and the recovery-based error estimates with the post-processed pressure are derived theoretically. Numerical experiments are conducted to show that the proposed estimators are effective indicators of local error for incompressible flow problems.

Reactive Transport Modeling

Download Reactive Transport Modeling PDF Online Free

Author :
Publisher : John Wiley & Sons
ISBN 13 : 1119060028
Total Pages : 689 pages
Book Rating : 4.1/5 (19 download)

DOWNLOAD NOW!


Book Synopsis Reactive Transport Modeling by : Yitian Xiao

Download or read book Reactive Transport Modeling written by Yitian Xiao and published by John Wiley & Sons. This book was released on 2018-03-14 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: Teaches the application of Reactive Transport Modeling (RTM) for subsurface systems in order to expedite the understanding of the behavior of complex geological systems This book lays out the basic principles and approaches of Reactive Transport Modeling (RTM) for surface and subsurface environments, presenting specific workflows and applications. The techniques discussed are being increasingly commonly used in a wide range of research fields, and the information provided covers fundamental theory, practical issues in running reactive transport models, and how to apply techniques in specific areas. The need for RTM in engineered facilities, such as nuclear waste repositories or CO2 storage sites, is ever increasing, because the prediction of the future evolution of these systems has become a legal obligation. With increasing recognition of the power of these approaches, and their widening adoption, comes responsibility to ensure appropriate application of available tools. This book aims to provide the requisite understanding of key aspects of RTM, and in doing so help identify and thus avoid potential pitfalls. Reactive Transport Modeling covers: the application of RTM for CO2 sequestration and geothermal energy development; reservoir quality prediction; modeling diagenesis; modeling geochemical processes in oil & gas production; modeling gas hydrate production; reactive transport in fractured and porous media; reactive transport studies for nuclear waste disposal; reactive flow modeling in hydrothermal systems; and modeling biogeochemical processes. Key features include: A comprehensive reference for scientists and practitioners entering the area of reactive transport modeling (RTM) Presented by internationally known experts in the field Covers fundamental theory, practical issues in running reactive transport models, and hands-on examples for applying techniques in specific areas Teaches readers to appreciate the power of RTM and to stimulate usage and application Reactive Transport Modeling is written for graduate students and researchers in academia, government laboratories, and industry who are interested in applying reactive transport modeling to the topic of their research. The book will also appeal to geochemists, hydrogeologists, geophysicists, earth scientists, environmental engineers, and environmental chemists.