Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Monte Carlo Solutions Of The Radiative Transfer Equation For Scattering Systems
Download Monte Carlo Solutions Of The Radiative Transfer Equation For Scattering Systems full books in PDF, epub, and Kindle. Read online Monte Carlo Solutions Of The Radiative Transfer Equation For Scattering Systems ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Wave Propagation and Scattering in Random Media by : Akira Ishimaru
Download or read book Wave Propagation and Scattering in Random Media written by Akira Ishimaru and published by Elsevier. This book was released on 2013-06-11 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: Wave Propagation and Scattering in Random Media, Volume 1: Single Scattering and Transport Theory presents the fundamental formulations of wave propagation and scattering in random media in a unified and systematic manner, as well as useful approximation techniques applicable to a variety of different situations. The emphasis is on single scattering theory and transport theory. The reader is introduced to the fundamental concepts and useful results of the statistical wave propagation theory. This volume is comprised of 13 chapters, organized around three themes: waves in random scatterers, waves in random continua, and rough surface scattering. The first part deals with the scattering and propagation of waves in a tenuous distribution of scatterers, using the single scattering theory and its slight extension to explain the fundamentals of wave fluctuations in random media without undue mathematical complexities. Many practical problems of wave propagation and scattering in the atmosphere, oceans, and other random media are discussed. The second part examines transport theory, also known as the theory of radiative transfer, and includes chapters on wave propagation in random particles, isotropic scattering, and the plane-parallel problem. This monograph is intended for engineers and scientists interested in optical, acoustic, and microwave propagation and scattering in atmospheres, oceans, and biological media.
Book Synopsis Radiative Processes in Astrophysics by : George B. Rybicki
Download or read book Radiative Processes in Astrophysics written by George B. Rybicki and published by John Wiley & Sons. This book was released on 2008-09-26 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radiative Processes in Astrophysics: This clear, straightforward, and fundamental introduction is designed to present-from a physicist's point of view-radiation processes and their applications to astrophysical phenomena and space science. It covers such topics as radiative transfer theory, relativistic covariance and kinematics, bremsstrahlung radiation, synchrotron radiation, Compton scattering, some plasma effects, and radiative transitions in atoms. Discussion begins with first principles, physically motivating and deriving all results rather than merely presenting finished formulae. However, a reasonably good physics background (introductory quantum mechanics, intermediate electromagnetic theory, special relativity, and some statistical mechanics) is required. Much of this prerequisite material is provided by brief reviews, making the book a self-contained reference for workers in the field as well as the ideal text for senior or first-year graduate students of astronomy, astrophysics, and related physics courses. Radiative Processes in Astrophysics also contains about 75 problems, with solutions, illustrating applications of the material and methods for calculating results. This important and integral section emphasizes physical intuition by presenting important results that are used throughout the main text; it is here that most of the practical astrophysical applications become apparent.
Book Synopsis Radiative Heat Transfer by : Michael F. Modest
Download or read book Radiative Heat Transfer written by Michael F. Modest and published by McGraw-Hill Science, Engineering & Mathematics. This book was released on 1993 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Offers a comprehensive treatment of heat transfer. In addition to the standard topics usually covered, it also includes a number of modern state-of-the-art topics including: radiative properties of particles, generation of P-N approximation and collimated irradiation.
Book Synopsis The Equations of Radiation Hydrodynamics by : Gerald C. Pomraning
Download or read book The Equations of Radiation Hydrodynamics written by Gerald C. Pomraning and published by Courier Corporation. This book was released on 2005-01-01 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graduate-level text examines propagation of thermal radiation through a fluid and its effects on the hydrodynamics of fluid motion. Topics include approximate formulations of radiative transfer and relativistic effects of fluid motion; microscopic physics associated with the equation of transfer; inverse Compton scattering; and hydrodynamic description of fluid. 1973 edition.
Book Synopsis Foundations of Radiation Hydrodynamics by : Dimitri Mihalas
Download or read book Foundations of Radiation Hydrodynamics written by Dimitri Mihalas and published by Courier Corporation. This book was released on 2013-04-10 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: Excellent, informative volume focuses on dynamics of nonradiating fluids, problems involving waves, shocks and stellar winds, physics of radiation, radiation transport, and the dynamics of radiating fluids. 1984 edition.
Book Synopsis Radiation Heat Transfer by : Ephraim M. Sparrow
Download or read book Radiation Heat Transfer written by Ephraim M. Sparrow and published by Hemisphere Pub. This book was released on 1978 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Book Synopsis Monte Carlo Methods for Particle Transport by : Alireza Haghighat
Download or read book Monte Carlo Methods for Particle Transport written by Alireza Haghighat and published by CRC Press. This book was released on 2020-08-09 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fully updated with the latest developments in the eigenvalue Monte Carlo calculations and automatic variance reduction techniques and containing an entirely new chapter on fission matrix and alternative hybrid techniques. This second edition explores the uses of the Monte Carlo method for real-world applications, explaining its concepts and limitations. Featuring illustrative examples, mathematical derivations, computer algorithms, and homework problems, it is an ideal textbook and practical guide for nuclear engineers and scientists looking into the applications of the Monte Carlo method, in addition to students in physics and engineering, and those engaged in the advancement of the Monte Carlo methods. Describes general and particle-transport-specific automated variance reduction techniques Presents Monte Carlo particle transport eigenvalue issues and methodologies to address these issues Presents detailed derivation of existing and advanced formulations and algorithms with real-world examples from the author’s research activities
Book Synopsis Radiation Hydrodynamics by : John I. Castor
Download or read book Radiation Hydrodynamics written by John I. Castor and published by Cambridge University Press. This book was released on 2004-09-23 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description
Book Synopsis Radiative Heat Transfer by : Michael F. Modest
Download or read book Radiative Heat Transfer written by Michael F. Modest and published by Academic Press. This book was released on 2021-10-16 with total page 1018 pages. Available in PDF, EPUB and Kindle. Book excerpt: Radiative Heat Transfer, Fourth Edition is a fully updated, revised and practical reference on the basic physics and computational tools scientists and researchers use to solve problems in the broad field of radiative heat transfer. This book is acknowledged as the core reference in the field, providing models, methodologies and calculations essential to solving research problems. It is applicable to a variety of industries, including nuclear, solar and combustion energy, aerospace, chemical and materials processing, as well as environmental, biomedical and nanotechnology fields. Contemporary examples and problems surrounding sustainable energy, materials and process engineering are an essential addition to this edition. - Includes end-of-chapter problems and a solutions manual, providing a structured and coherent reference - Presents many worked examples which have been brought fully up-to-date to reflect the latest research - Details many computer codes, ranging from basic problem solving aids to sophisticated research tools
Book Synopsis Thermal Radiation Heat Transfer by : John R. Howell
Download or read book Thermal Radiation Heat Transfer written by John R. Howell and published by CRC Press. This book was released on 2015-09-18 with total page 1016 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore the Radiative Exchange between Surfaces Further expanding on the changes made to the fifth edition, Thermal Radiation Heat Transfer, 6th Edition continues to highlight the relevance of thermal radiative transfer and focus on concepts that develop the radiative transfer equation (RTE). The book explains the fundamentals of radiative transfer, introduces the energy and radiative transfer equations, covers a variety of approaches used to gauge radiative heat exchange between different surfaces and structures, and provides solution techniques for solving the RTE. What’s New in the Sixth Edition This revised version updates information on properties of surfaces and of absorbing/emitting/scattering materials, radiative transfer among surfaces, and radiative transfer in participating media. It also enhances the chapter on near-field effects, addresses new applications that include enhanced solar cell performance and self-regulating surfaces for thermal control, and updates references. Comprised of 17 chapters, this text: Discusses the fundamental RTE and its simplified forms for different medium properties Presents an intuitive relationship between the RTE formulations and the configuration factor analyses Explores the historical development and the radiative behavior of a blackbody Defines the radiative properties of solid opaque surfaces Provides a detailed analysis and solution procedure for radiation exchange analysis Contains methods for determining the radiative flux divergence (the radiative source term in the energy equation) Thermal Radiation Heat Transfer, 6th Edition explores methods for solving the RTE to determine the local spectral intensity, radiative flux, and flux gradient. This book enables you to assess and calculate the exchange of energy between objects that determine radiative transfer at different energy levels.
Book Synopsis The Monte Carlo Methods in Atmospheric Optics by : G.I. Marchuk
Download or read book The Monte Carlo Methods in Atmospheric Optics written by G.I. Marchuk and published by Springer. This book was released on 2013-04-17 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is devoted to urgent questions of the theory and applications of the Monte Carlo method for solving problems of atmospheric optics and hydrooptics. The importance of these problems has grown because of the increas ing need to interpret optical observations, and to estimate radiative balance precisely for weather forecasting. Inhomogeneity and sphericity of the atmos phere, absorption in atmospheric layers, multiple scattering and polarization of light, all create difficulties in solving these problems by traditional methods of computational mathematics. Particular difficulty arises when one must solve nonstationary problems of the theory of transfer of narrow beams that are connected with the estimation of spatial location and time characteristics of the radiation field. The most universal method for solving those problems is the Monte Carlo method, which is a numerical simulation of the radiative-transfer process. This process can be regarded as a Markov chain of photon collisions in a medium, which result in scattering or absorption. The Monte Carlo tech nique consists in computational simulation of that chain and in constructing statistical estimates of the desired functionals. The authors of this book have contributed to the development of mathemati cal methods of simulation and to the interpretation of optical observations. A series of general method using Monte Carlo techniques has been developed. The present book includes theories and algorithms of simulation. Numerical results corroborate the possibilities and give an impressive prospect of the applications of Monte Carlo methods.
Book Synopsis Light Propagation Through Biological Tissue and Other Diffusive Media by : Fabrizio Martelli
Download or read book Light Propagation Through Biological Tissue and Other Diffusive Media written by Fabrizio Martelli and published by Society of Photo Optical. This book was released on 2010 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides foundational information on modeling light propagation through diffusive media, with special emphasis on biological tissue. A summary of the theoretical background on light propagation through diffusive media is provided with the aid of easy-to-use software designed to calculate the solutions of the diffusion equation. The book also provides: the basic theory of photon transport with the analytical solutions of the diffusion equation for several geometries; detailed coverage of the radiative transfer equation and the diffusion equation; the theories and the formulae based on the diffusion equation that have been widely used for biomedical applications; the general concepts and the physical quantities necessary to describe light propagation through absorbing and scattering media; and, a description of the software provided on the CD-ROM, along with the accuracy of the presented solutions. Although the theoretical and computational tools provided with this book and CD-ROM have their primary use in the field of biomedical optics, there are many other applications in which they can be used, including agricultural products, forest products, food products, plastic materials, pharmaceutical products, and many others.
Book Synopsis Radiative Transfer in the Atmosphere and Ocean by : Gary E. Thomas
Download or read book Radiative Transfer in the Atmosphere and Ocean written by Gary E. Thomas and published by Cambridge University Press. This book was released on 2002-01-28 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a foundation of the theoretical and practical aspects of radiative transfer, for the atmospheric, oceanic and environmental sciences.
Book Synopsis Optical-Thermal Response of Laser-Irradiated Tissue by : Ashley J. Welch
Download or read book Optical-Thermal Response of Laser-Irradiated Tissue written by Ashley J. Welch and published by Springer Science & Business Media. This book was released on 2011-01-15 with total page 951 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition maintains the standard of excellence established in the first edition, while adjusting the content to reflect changes in tissue optics and medical applications since 1995. The material concerning light propagation now contains new chapters devoted to electromagnetic theory for coherent light. The material concerning thermal laser-tissue interactions contains a new chapter on pulse ablation of tissue. The medical applications section now includes several new chapters on Optical Coherent Tomography, acoustic imaging, molecular imaging, forensic optics and nerve stimulation. A detailed overview is provided of the optical and thermal response of tissue to laser irradiation along with diagnostic and therapeutic examples including fiber optics. Sufficient theory is included in the book so that it is suitable for a one or two semester graduate or for senior elective courses. Material covered includes (1) light propagation and diagnostic application; (2) the thermal response of tissue and therapeutic application; (3) denaturation; and (4) ablation. The theory and applications provide researchers with sufficient detail that this volume will become the primary reference for laser-tissue interactions and medical applications.
Book Synopsis Non-LTE Radiative Transfer in the Atmosphere by : Manuel López-Puertas
Download or read book Non-LTE Radiative Transfer in the Atmosphere written by Manuel López-Puertas and published by World Scientific. This book was released on 2001 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ch. 1. Introduction and overview. 1.1. General introduction. 1.2. Basic properties of the Earth's atmosphere. 1.3. What is LTE? 1.4. Non-LTE situations. 1.5. The importance of non-LTE. 1.6. Some historical background. 1.7. Non-LTE models. 1.8. Experimental studies of non-LTE. 1.9. Non-LTE in planetary atmospheres. 1.10. References and further reading -- ch. 2. Molecular spectra. 2.1. Introduction. 2.2. Energy levels in diatomic molecules. 2.3. Energy levels in polyatomic molecules. 2.4. Transitions and spectral bands. 2.5. Properties of individual vibration-rotation lines. 2.6. Interactions between energy levels. 2.7. References and further reading -- ch. 3. Basic atmospheric radiative transfer. 3.1. Introduction. 3.2. Properties of radiation. 3.3. The radiative transfer equation. 3.4. The formal solution of the radiative transfer equation. 3.5. Thermodynamic equilibrium and local thermodynamic equilibrium. 3.6. The source function in non-LTE. 3.7. Non-LTE situations. 3.8. References and further reading -- ch. 4. Solutions to the radiative transfer equation in LTE. 4.1. Introduction. 4.2. Integration of the radiative transfer equation over height. 4.3. Integration of the radiative transfer equation over frequency. 4.4. Integration of the radiative transfer equation over solid angle. 4.5. References and further reading -- ch. 5. Solutions to the radiative transfer equation in non-LTE. 5.1. Introduction. 5.2. Simple solutions for radiative transfer under non-LTE. 5.3. The full solution of the radiative transfer equation in non-LTE. 5.4. Integration of the RTE in non-LTE. 5.5. Intercomparison of non-LTE codes. 5.6. Parameterizations of the non-LTE cooling rate. 5.7. The Curtis matrix method. 5.8. References and further reading -- ch. 6. Non-LTE modelling of the Earth's atmosphere I: CO2. 6.1. Introduction. 6.2. Useful approximations. 6.3. Carbon dioxide, CO2. 6.4. References and further reading -- ch. 7. Non-LTE modelling of the Earth's atmosphere II: Other infrared emitters. 7.1. Introduction. 7.2. Carbon monoxide, CO. 7.3. Ozone, O3. 7.4. Water vapour, H2O. 7.5. Methane, CH4. 7.6. Nitric oxide, NO. 7.7. Nitrogen dioxide, NO2. 7.8. Nitrous oxide, N2O. 7.9. Nitric acid, HNO3. 7.10. Hydroxyl radical, OH. 7.11. Molecular oxygen atmospheric infrared bands. 7.12. Hydrogen chloride, HC1, and hydrogen fluoride, HF. 7.13. NO+. 7.14. Atomic Oxygen, O (3P), at 63[symbol]m. 7.15. References and further reading -- ch. 8. Remote sensing of the non-LTE atmosphere. 8.1. Introduction. 8.2. The analysis of emission measurements. 8.3. Observations of carbon dioxide in emission. 8.4. Observations of ozone in emission. 8.5. Observations of water vapour in emission. 8.6. Observations of carbon monoxide in emission. 8.7. Observations of nitric oxide in emission. 8.8. Observations of other infrared emissions. 8.9. Rotational non-LTE. 8.10. Absorption measurements. 8.11. Simulated limb emission spectra at high resolution. 8.12. Simulated Nadir emission spectra at high resolution. 8.13. Non-LTE retrieval schemes. 8.14. References and further reading -- ch. 9. Cooling and heating rates. 9.1. Introduction. 9.2. CO2 15 f[symbol]m cooling. 9.3. O3 9.6[symbol]xm cooling. 9.4. H2O 6.3[symbol]m cooling. 9.5. NO 5.3[symbol]m cooling. 9.6. O(3Pi) 63[symbol]m cooling. 9.7. Summary of cooling rates. 9.8. CO2 solar heating. 9.9. References and further reading -- ch. 10. Non-LTE in planetary atmospheres. 10.1. Introduction. 10.2. The terrestrial planets: Mars and Venus. 10.3. A non-LTE model for the Martian and Venusian atmospheres. 10.4. Mars. 10.5. Venus. 10.6. Outer planets. 10.7. Titan. 10.8. Comets. 10.9. References and further reading.
Book Synopsis Comprehensive Remote Sensing by : Shunlin Liang
Download or read book Comprehensive Remote Sensing written by Shunlin Liang and published by Elsevier. This book was released on 2017-11-08 with total page 3183 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive Remote Sensing, Nine Volume Set covers all aspects of the topic, with each volume edited by well-known scientists and contributed to by frontier researchers. It is a comprehensive resource that will benefit both students and researchers who want to further their understanding in this discipline. The field of remote sensing has quadrupled in size in the past two decades, and increasingly draws in individuals working in a diverse set of disciplines ranging from geographers, oceanographers, and meteorologists, to physicists and computer scientists. Researchers from a variety of backgrounds are now accessing remote sensing data, creating an urgent need for a one-stop reference work that can comprehensively document the development of remote sensing, from the basic principles, modeling and practical algorithms, to various applications. Fully comprehensive coverage of this rapidly growing discipline, giving readers a detailed overview of all aspects of Remote Sensing principles and applications Contains ‘Layered content’, with each article beginning with the basics and then moving on to more complex concepts Ideal for advanced undergraduates and academic researchers Includes case studies that illustrate the practical application of remote sensing principles, further enhancing understanding
Book Synopsis Radiation Heat Transfer by : J. Robert Mahan
Download or read book Radiation Heat Transfer written by J. Robert Mahan and published by John Wiley & Sons. This book was released on 2002-06-03 with total page 514 pages. Available in PDF, EPUB and Kindle. Book excerpt: - Wärmestrahlung spielt eine zentrale Rolle in der Natur und in vielfältigen technischen Systemen (zum Beispiel in Wärmekraftanlagen, Kühlaggregaten, elektronischen Schaltungen usw.) - dieses Buch erläutert die theoretischen Grundlagen mit starker Betonung praktischer Konsequenzen - hervorzuheben ist die Erklärung der Monte-Carlo-/Raytrace-Methode (momentan Stand der Technik)