Read Books Online and Download eBooks, EPub, PDF, Mobi, Kindle, Text Full Free.
Modular Curves And Abelian Varieties
Download Modular Curves And Abelian Varieties full books in PDF, epub, and Kindle. Read online Modular Curves And Abelian Varieties ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!
Book Synopsis Modular Curves and Abelian Varieties by : John Cremona
Download or read book Modular Curves and Abelian Varieties written by John Cremona and published by Birkhäuser. This book was released on 2012-12-06 with total page 291 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents lectures from a conference on "Modular Curves and Abelian Varieties'' at the Centre de Recerca Matemtica (Bellaterra, Barcelona). The articles in this volume present the latest achievements in this extremely active field and will be of interest both to specialists and to students and researchers. Many contributions focus on generalizations of the Shimura-Taniyama conjecture to varieties such as elliptic Q-curves and Abelian varieties of GL_2-type. The book also includes several key articles in the subject that do not correspond to conference lectures.
Book Synopsis Modular Curves and Abelian Varieties by : John Cremona
Download or read book Modular Curves and Abelian Varieties written by John Cremona and published by Springer Science & Business Media. This book was released on 2004-02-23 with total page 308 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents lectures from a conference on "Modular Curves and Abelian Varieties'' at the Centre de Recerca Matemàtica (Bellaterra, Barcelona). The articles in this volume present the latest achievements in this extremely active field and will be of interest both to specialists and to students and researchers. Many contributions focus on generalizations of the Shimura-Taniyama conjecture to varieties such as elliptic Q-curves and Abelian varieties of GL_2-type. The book also includes several key articles in the subject that do not correspond to conference lectures.
Book Synopsis Abelian l-Adic Representations and Elliptic Curves by : Jean-Pierre Serre
Download or read book Abelian l-Adic Representations and Elliptic Curves written by Jean-Pierre Serre and published by CRC Press. This book was released on 1997-11-15 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This classic book contains an introduction to systems of l-adic representations, a topic of great importance in number theory and algebraic geometry, as reflected by the spectacular recent developments on the Taniyama-Weil conjecture and Fermat's Last Theorem. The initial chapters are devoted to the Abelian case (complex multiplication), where one
Book Synopsis A First Course in Modular Forms by : Fred Diamond
Download or read book A First Course in Modular Forms written by Fred Diamond and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 462 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces the theory of modular forms, from which all rational elliptic curves arise, with an eye toward the Modularity Theorem. Discussion covers elliptic curves as complex tori and as algebraic curves; modular curves as Riemann surfaces and as algebraic curves; Hecke operators and Atkin-Lehner theory; Hecke eigenforms and their arithmetic properties; the Jacobians of modular curves and the Abelian varieties associated to Hecke eigenforms. As it presents these ideas, the book states the Modularity Theorem in various forms, relating them to each other and touching on their applications to number theory. The authors assume no background in algebraic number theory and algebraic geometry. Exercises are included.
Book Synopsis Moduli of Curves and Abelian Varieties by : Carel Faber
Download or read book Moduli of Curves and Abelian Varieties written by Carel Faber and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Dutch Intercity Seminar on Moduli, which dates back to the early eighties, was an initiative of G. van der Geer, F. Oort and C. Peters. Through the years it became a focal point of Dutch mathematics and it gained some fame, also outside Holland, as an active biweekly research seminar. The tradition continues up to today. The present volume, with contributions of R. Dijkgraaf, C. Faber, G. van der Geer, R. Hain, E. Looijenga, and F. Oort, originates from the seminar held in 1995--96. Some of the articles here were discussed, in preliminary form, in the seminar; others are completely new. Two introductory papers, on moduli of abelian varieties and on moduli of curves, accompany the articles.
Book Synopsis The Arithmetic of Elliptic Curves by : Joseph H. Silverman
Download or read book The Arithmetic of Elliptic Curves written by Joseph H. Silverman and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 414 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic approach in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. Following a brief discussion of the necessary algebro-geometric results, the book proceeds with an exposition of the geometry and the formal group of elliptic curves, elliptic curves over finite fields, the complex numbers, local fields, and global fields. Final chapters deal with integral and rational points, including Siegels theorem and explicit computations for the curve Y = X + DX, while three appendices conclude the whole: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and an overview of more advanced topics.
Book Synopsis Modular Forms and Fermat’s Last Theorem by : Gary Cornell
Download or read book Modular Forms and Fermat’s Last Theorem written by Gary Cornell and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the expanded lectures given at a conference on number theory and arithmetic geometry held at Boston University. It introduces and explains the many ideas and techniques used by Wiles, and to explain how his result can be combined with Ribets theorem and ideas of Frey and Serre to prove Fermats Last Theorem. The book begins with an overview of the complete proof, followed by several introductory chapters surveying the basic theory of elliptic curves, modular functions and curves, Galois cohomology, and finite group schemes. Representation theory, which lies at the core of the proof, is dealt with in a chapter on automorphic representations and the Langlands-Tunnell theorem, and this is followed by in-depth discussions of Serres conjectures, Galois deformations, universal deformation rings, Hecke algebras, and complete intersections. The book concludes by looking both forward and backward, reflecting on the history of the problem, while placing Wiles'theorem into a more general Diophantine context suggesting future applications. Students and professional mathematicians alike will find this an indispensable resource.
Book Synopsis Introduction to the Arithmetic Theory of Automorphic Functions by : Gorō Shimura
Download or read book Introduction to the Arithmetic Theory of Automorphic Functions written by Gorō Shimura and published by Princeton University Press. This book was released on 1971-08-21 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of automorphic forms is playing increasingly important roles in several branches of mathematics, even in physics, and is almost ubiquitous in number theory. This book introduces the reader to the subject and in particular to elliptic modular forms with emphasis on their number-theoretical aspects. After two chapters geared toward elementary levels, there follows a detailed treatment of the theory of Hecke operators, which associate zeta functions to modular forms. At a more advanced level, complex multiplication of elliptic curves and abelian varieties is discussed. The main question is the construction of abelian extensions of certain algebraic number fields, which is traditionally called "Hilbert's twelfth problem." Another advanced topic is the determination of the zeta function of an algebraic curve uniformized by modular functions, which supplies an indispensable background for the recent proof of Fermat's last theorem by Wiles.
Download or read book Abelian Varieties written by Serge Lang and published by Dover Publications. This book was released on 2019-02-13 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the work in algebraic geometry by Norwegian mathematician Niels Henrik Abel (1802–29), this monograph was originally published in 1959 and reprinted later in author Serge Lang's career without revision. The treatment remains a basic advanced text in its field, suitable for advanced undergraduates and graduate students in mathematics. Prerequisites include some background in elementary qualitative algebraic geometry and the elementary theory of algebraic groups. The book focuses exclusively on Abelian varieties rather than the broader field of algebraic groups; therefore, the first chapter presents all the general results on algebraic groups relevant to this treatment. Each chapter begins with a brief introduction and concludes with a historical and bibliographical note. Topics include general theorems on Abelian varieties, the theorem of the square, divisor classes on an Abelian variety, functorial formulas, the Picard variety of an arbitrary variety, the I-adic representations, and algebraic systems of Abelian varieties. The text concludes with a helpful Appendix covering the composition of correspondences.
Book Synopsis Moduli of Abelian Varieties by : Gerard van der Geer
Download or read book Moduli of Abelian Varieties written by Gerard van der Geer and published by Birkhäuser. This book was released on 2012-12-06 with total page 526 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abelian varieties and their moduli are a topic of increasing importance in today`s mathematics, applications ranging from algebraic geometry and number theory to mathematical physics. This collection of 17 refereed articles originates from the third "Texel Conference" held in 1999. Leading experts discuss and study the structure of the moduli spaces of abelian varieties and related spaces, giving an excellent view of the state of the art in this field.
Book Synopsis Algorithms for Modular Elliptic Curves Full Canadian Binding by : J. E. Cremona
Download or read book Algorithms for Modular Elliptic Curves Full Canadian Binding written by J. E. Cremona and published by CUP Archive. This book was released on 1997-05-15 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents an extensive set of tables giving information about elliptic curves.
Book Synopsis Rational Points on Elliptic Curves by : Joseph H. Silverman
Download or read book Rational Points on Elliptic Curves written by Joseph H. Silverman and published by Springer Science & Business Media. This book was released on 2013-04-17 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of elliptic curves involves a blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, providing an opportunity for readers to appreciate the unity of modern mathematics. The book’s accessibility, the informal writing style, and a wealth of exercises make it an ideal introduction for those interested in learning about Diophantine equations and arithmetic geometry.
Book Synopsis Introduction to Modular Forms by : Serge Lang
Download or read book Introduction to Modular Forms written by Serge Lang and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 267 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "This book gives a thorough introduction to several theories that are fundamental to research on modular forms. Most of the material, despite its importance, had previously been unavailable in textbook form. Complete and readable proofs are given... In conclusion, this book is a welcome addition to the literature for the growing number of students and mathematicians in other fields who want to understand the recent developments in the theory of modular forms." #Mathematical Reviews# "This book will certainly be indispensable to all those wishing to get an up-to-date initiation to the theory of modular forms." #Publicationes Mathematicae#
Book Synopsis Geometric Modular Forms and Elliptic Curves by : Haruzo Hida
Download or read book Geometric Modular Forms and Elliptic Curves written by Haruzo Hida and published by World Scientific. This book was released on 2012 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: 1. An algebro-geometric tool box. 1.1. Sheaves. 1.2. Schemes. 1.3. Projective schemes. 1.4. Categories and functors. 1.5. Applications of the key-lemma. 1.6. Group schemes. 1.7. Cartier duality. 1.8. Quotients by a group scheme. 1.9. Morphisms. 1.10. Cohomology of coherent sheaves. 1.11. Descent. 1.12. Barsotti-Tate groups. 1.13. Formal scheme -- 2. Elliptic curves. 2.1. Curves and divisors. 2.2. Elliptic curves. 2.3. Geometric modular forms of level 1. 2.4. Elliptic curves over C. 2.5. Elliptic curves over p-adic fields. 2.6. Level structures. 2.7. L-functions of elliptic curves. 2.8. Regularity. 2.9. p-ordinary moduli problems. 2.10. Deformation of elliptic curves -- 3. Geometric modular forms. 3.1. Integrality. 3.2. Vertical control theorem. 3.3. Action of GL(2) on modular forms -- 4. Jacobians and Galois representations. 4.1. Jacobians of stable curves. 4.2. Modular Galois representations. 4.3. Fullness of big Galois representations -- 5. Modularity problems. 5.1. Induced and extended Galois representations. 5.2. Some other solutions. 5.3. Modularity of Abelian Q-varieties
Book Synopsis Modular Forms, a Computational Approach by : William A. Stein
Download or read book Modular Forms, a Computational Approach written by William A. Stein and published by American Mathematical Soc.. This book was released on 2007-02-13 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: This marvellous and highly original book fills a significant gap in the extensive literature on classical modular forms. This is not just yet another introductory text to this theory, though it could certainly be used as such in conjunction with more traditional treatments. Its novelty lies in its computational emphasis throughout: Stein not only defines what modular forms are, but shows in illuminating detail how one can compute everything about them in practice. This is illustrated throughout the book with examples from his own (entirely free) software package SAGE, which really bring the subject to life while not detracting in any way from its theoretical beauty. The author is the leading expert in computations with modular forms, and what he says on this subject is all tried and tested and based on his extensive experience. As well as being an invaluable companion to those learning the theory in a more traditional way, this book will be a great help to those who wish to use modular forms in applications, such as in the explicit solution of Diophantine equations. There is also a useful Appendix by Gunnells on extensions to more general modular forms, which has enough in it to inspire many PhD theses for years to come. While the book's main readership will be graduate students in number theory, it will also be accessible to advanced undergraduates and useful to both specialists and non-specialists in number theory. --John E. Cremona, University of Nottingham William Stein is an associate professor of mathematics at the University of Washington at Seattle. He earned a PhD in mathematics from UC Berkeley and has held positions at Harvard University and UC San Diego. His current research interests lie in modular forms, elliptic curves, and computational mathematics.
Book Synopsis Rational Points on Modular Elliptic Curves by : Henri Darmon
Download or read book Rational Points on Modular Elliptic Curves written by Henri Darmon and published by American Mathematical Soc.. This book was released on 2004 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book surveys some recent developments in the arithmetic of modular elliptic curves. It places a special emphasis on the construction of rational points on elliptic curves, the Birch and Swinnerton-Dyer conjecture, and the crucial role played by modularity in shedding light on these two closely related issues. The main theme of the book is the theory of complex multiplication, Heegner points, and some conjectural variants. The first three chapters introduce the background and prerequisites: elliptic curves, modular forms and the Shimura-Taniyama-Weil conjecture, complex multiplication and the Heegner point construction. The next three chapters introduce variants of modular parametrizations in which modular curves are replaced by Shimura curves attached to certain indefinite quaternion algebras. The main new contributions are found in Chapters 7-9, which survey the author's attempts to extend the theory of Heegner points and complex multiplication to situations where the base field is not a CM field. Chapter 10 explains the proof of Kolyvagin's theorem, which relates Heegner points to the arithmetic of elliptic curves and leads to the best evidence so far for the Birch and Swinnerton-Dyer conjecture.
Book Synopsis Analytic Theory of Abelian Varieties by : H. P. F. Swinnerton-Dyer
Download or read book Analytic Theory of Abelian Varieties written by H. P. F. Swinnerton-Dyer and published by Cambridge University Press. This book was released on 1974-12-12 with total page 105 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of abelian manifolds forms a natural generalization of the theory of elliptic functions, that is, of doubly periodic functions of one complex variable. When an abelian manifold is embedded in a projective space it is termed an abelian variety in an algebraic geometrical sense. This introduction presupposes little more than a basic course in complex variables. The notes contain all the material on abelian manifolds needed for application to geometry and number theory, although they do not contain an exposition of either application. Some geometrical results are included however.